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Outline

1 Fundamentals
Symmetries in Classical and Quantum Mechanics.
Irreducible representations (irreps) of SU(2).
Irreps of the HLG: Chirality, Parity and Dirac Equation.
Quantum Field theory: complex scalar field.

2 Electroweak interactions: Glashow-Weinberg-Salam theory.
Minimal coupling principle in classical mechanics.
Gauge theories: Abelian and non-Abelian.
Quantum Electrodynamics
Fermi theory, IVB theory, parity violation and V-A structure of
weak interactions
GWS Theory. Spontaneous Breaking of Symmetries.

3 Strong interactions:QCD.
Irreducible representations of SU(3)
Classification of hadrons: Eightfold Way, Quark Model
Gauge theory of strong interactions: QCD.
Running of couplings: Confinement and asymptotic freedom.
Experimental evidence for color degrees of freedom.



What these lectures are...

In these lectures I will give an introduction to :
1 What is an elementary particle? Quantum realm. Symmetries.

Group theory.
2 How do we describe their electromagnetic, weak and strong

interactions?
3 No time for a historical account on how we arrived at the SM.

Fascinating story of hundreds of experiments, a plethora of
ideas and more than 40 Nobel prizes during the last century.

4 The most impressive intelectual construction of human kind
so far in my opinion.

5 Overconstrained framework after the discovery of the Higgs,
but not the end of the story. Many things to do in HEP.

6 Most of the previously explored routes are not appealing now,
but new challenges in HEP: neutrinos, dark matter,
matter-antimatter asymmetry (CP violation), dark energy.
Quantum theory of gravity.



The magic word in physics is...

S Y M M E T R Y
You must master the natural language of

symmetries: group theory.



Nature is beautiful... because of symmetry.



Nature is beautiful... because of symmetry (d ≈ 10−20m).
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Standard Model of Particle Interactions

Quantum theory of electromagnetic, weak and strong
interactions of the known elementary particles.



Symmetry ≡ Invariance of a physical system (S) under some
transformations (T)

S ST = S
T

T = {Rn ≡ R(nθ)}, n = 0, 1, ..., 11; θ = 30◦

1 RnRm = Rn+m: Closure.

2 Rn(RmRl) = (RnRm)Rl : Associativity.

3 RmR0 = R0Rm = Rm : Identity.

4 RnR12−n = R0: Inverse.

These axioms define a Group.

The mathematical language to describe symmetries is Group
Theory .



Warming up: Classical description of systems

Primary concepts of inertial frames, forces
and interactions∑

i

F ext
i =

dP
dt
.

First approximation: long distance (low
energy) description. Particle physics.

Conservative forces : Fi = −∇V (r , t).

For some systems conserved quantities
emerge (energy, momentum, etc).

Least action principles
δS ≡ δ

∫
dtL(qi , q̇i , t) = 0: Lagrange,

Hamilton, ...
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Symmetries in classical mechanics.

A guide to the most convenient choice of generalized
coordinates, e.g. solution to the central potential V = V (r) is
easier taking q1 = r , q2 = θ, q3 = φ.

Independence of V on some generalized coordinate is a
symmetry of the system.

These symmetries yield a conserved quantities

pi =
∂L

∂q̇i
.

Systematics: Emily Noether, 1915

Symmetries of S =
∫
dtL(qi , q̇i , t) ⇔ conserved quantities



Symmetries and conserved quantities: Noether’s theorem

Simplest version: symmetries of L

In the Lagrange formalism

L =
∑
i

1

2
mq̇2

i − V (qi , t)

Perform a transformation
∆qi

∆L =
∂L

∂qi
∆qi +

∂L

∂q̇i
∆q̇i

=
d

dt
(
∂L

∂q̇i
)∆qi +

∂L

∂q̇i
∆q̇i

=
d

dt
(
∂L

∂q̇i
∆qi ).

If L is invariant (∆L = 0)
⇒ ∂L

∂q̇i
∆qi = cte.

Continuous transformations
can be written in terms of
some independent
parameters εk

∆qi =
∑
k

εkξik(q, q̇)

Conserved Noether charges

Qk =
∂L

∂q̇i
ξik(q, q̇).



Space translations :

δqi = εkδik ⇒ Qk =
∂L

∂q̇i
δik =

∂L

∂q̇k
≡ pk

Rotations

r′

r
δθ

δr

n

δr = n × rδθ
δxi = εiklnkxlδθ,

ξik = εiklxl , εk = nkδθ

⇒ Qk =
∂L

∂ẋi
εiklxl = (r × p)k = Lk

Solving the classical dynamics of a particle amounts to find all the
symmetries of the system

But elementary particles live in the Quantum Realm



In preparation: Rotations and the exponential map.

r′

r
dθ

dr

n

dr = n × rdθ

x ′i = xi + εijknjxkdθ

= (δik + εijknjdθ)xk

= (δik − i(J · n)ikdθ)xk

(Ji )jk = −iεijk

Classical mechanics

Finite rotations (dθ ↔ θ
N )

r ′ = R(n, θ)r ,

R(n, θ) = ĺım
N→∞

(13×3 − i(J · n)
θ

N
)N

= e−iJ·n θ.

R depend continuously on three
parameters θ = nθ.

J ≡ Rotation generators in R3

3× 3 matrices satisfying

[Ji , Jj ] = iεijkJk



J are Hermitian matrices of null trace

((Ji )
†)jk = (−iεikj)∗ = −iεijk = (Ji )jk

Tr(Ji ) = −iεijj = 0

Rotation operators are orthogonal matrices

[R(n, θ)]t = [e−iJ·n θ]t = e−iJ
t ·nθ = e+iJ·nθ = [R(n, θ)]−1,

with unit determinant

Det[R(n, θ)] = Det[e−iJ·n θ] = e−iTr(J)·n = 1.

Rotation operators in classical mechanics (R3) form a group
with the conventional matrix product

Group of 3× 3 orthogonal matrices of unit determinant ≡ SO(3)
group. Fully characterized by the Lie algebra

[Ji , Jj ] = iεijkJk

Elementary particles live in the Quantum Realm



Quantum Mechanics in a nutshell

1 Physical information of the system encoded in the state vector
|ψ〉 ∈ H.

2 Observables represented by hermitian operators acting on H 1.
3 A measurement of the observable A can only yield one of the

eigenvalues ak of the representing operador (A|ai 〉 = ai |ai 〉).
4 Before measuring A we don’t know with certainty the

resulting eigenvalue ak , we only know the probability

P(ak) = |〈ak |ψ〉|2.

5 If the resulting value of a measurement of A is am, the state
describing the system immediately after is |am〉.

6 Dynamics is dictated by the Schrodinger equation

i~∂t |ψ(t)〉 = H|ψ(t)〉.
1The eigenvalues of a Hermitian operators are real numbers.



Characterizing the Hilbert space

We need a complete set of commuting observables (CSCO).
We always choose H in this set ≡ {H,A,B,C ...}.
Common eigenstates {|E , a, b, c , ...〉} form a basis of H.

S

H

Eabcd...

The eigenvalues of the CSCO, {E , a, b, c ...} are referred to as
good quantum numbers.
All operators in the CSCO conmute with H:

[H,A] = [H,B] = [H,C ] = ... = 0.

They represent conserved quantities.



But in classical mechanics conserved quantities are a
consequence of the existence of symmetries...



Symmetries in Quantum Mechanics.

In the quantum realm a classical transformation T is
represented by an operator UT in H

|ψ〉 → |ψ′〉 = UT |ψ〉
If T is a symmetry of the system, probabilities are invariant

|〈φ′|ψ′〉|2 = |〈UTφ|UTψ〉|2 = |〈φ|U†TUTψ〉|2 = |〈φ|ψ〉|2

Symmetry transformations are represented by unitary (or
anti-unitary, Wigner 1932) operators

U†TUT = UTU
†
T = 1

Observables transform as

O′ = UTOU†T
The system is invariant thus

H ′ = UTHU
†
T = H ⇒ [H,UT ] = 0



If the symmetry is continuous UT can always be written in a
exponential form (exponential map)

UT = e iG with G † = G .

Continuous transformations depend on n parámetros
αi , i = 1, 2, ...n. e.g. for SO(3), αi = θi .
There are n generators Gi (e.g. for SO(3), Gi = Ji ). In
general G = Giαi = G ·α.
The generators of continuous symmetries are Hermitian
operators. Represent observables in QM.
[UT ,H] = 0⇒ [Gi ,H] = 0. Generators of continuous
symmetries are natural candidates for the CSCO.
Only those generators commuting with each other can
be in the CSCO : Cartan Sub-algebra of the symmetry
group.
In addition there are products of generators commuting with
all Gi : Casimir Operators of the symmetry group. They
also belong to the CSCO.



Conclusion: a quantum system is fully characterized by its
total symmetry group

Good quantum numbers correspond to the eigenvalues of H, the
Casimir operators of the full symmetry group and the generators in
the Cartan sub-algebra of this group. Quantum states are classified
into minimal subspaces invariant under the full symmetry group
transformations (irreducible representaciones, irreps for short).

Elementary particles are quantum systems. We must find and
classify all their symmetries:

1 Free particles: Space-time symmetries. Poincarè group:
Rotations+translations+boosts. Supersymmetry?

2 Interacting particles: Gauge symmetries:
SU(3)c ⊗ SU(2)L ⊗ Y (1)Y .

3 Global symmetries: lepton number, baryon number etc.

4 Discrete symmetries: C , P, T , CP, PT , CPT , etc.



Starting: Rotations as a symmetry transformation in QM

Classical world

r′

r
dθ

dr

n

dr = n × rdθ

x ′i = (δik−i(J ·n)ikdθ)xk

(Ji )jk = −iεijk
[Ji , Jj ] = iεijkJk

[J2, Ji ] = 0

R(n, θ) = e−iJ·nθ

Quantum realm

J ≡ Rotation generators in H
Must satisfy [Ji , Jj ] = iεijkJk

R(n, θ)→ DR(n, θ) ≡ e−iJ·nθ

If rotations are a symmetry :
[J i ,H] = 0⇒ [J2,H] = 0.

From the Lie Algebra [J2, Ji ] = 0

{H, J2, Jz} are in the CSCO.

Must calculate eigenstates and
eigenvalues of {H, J2, Jz}.



Irreps of SU(2)

Start with the Lie Algebra :
[Ji , Jj ] = iεijkJk .

Define the eigenstates of J2

y Jz

J2|a, b〉 = a|a, b〉,
Jz |a, b〉 = b|a, b〉.

Define the operators
J± ≡ Jx ± iJy

Show that satisfy

J−J+ = J2 − J2
z − Jz ,

J+J− = J2 − J2
z + Jz ,

[Jz , J±]= ±J±,
[J+, J−]= 2Jz ,

[J2, J±] = 0.

The following relations hold

J2J±|a, b〉 = J±J
2|a, b〉 = aJ±|a, b〉,

JzJ±|a, b〉 = ([Jz , J±]+J±Jz)|a, b〉 = (±J±+J±b)|a, b〉 = (b ± 1)J±|a, b〉
J±|a, b〉 ∼ |a, b ± 1〉



Use the last relation k times

(J±)k |a, b〉 ∼ |a, b ± k〉

But

J2 − J2
z =

1

2
(J+J− + J−J+) =

1

2

(
J+(J+)† + (J+)†J+

)
thus

〈a, b|J2 − J2
z |a, b〉 =

1

2
(〈a, b|J+(J+)†|a, b〉+ 〈a, b|(J+)†J+|a, b〉)

=
1

2
(||J†+|a, b〉||+ ||J+|a, b〉||) > 0

hence
a− b2 > 0⇒ b2 ≤ a.

There must exist bmáx y bḿın such that

J+|a, bmáx〉 = 0 J−|a, bḿın〉 = 0



From these relations

J−J+|a, bmáx〉 = 0 ⇒ (J2 − J2
z − Jz)|a, bmáx〉 = 0

a− b2
máx − bmáx = 0⇒ a = bmáx(bmáx + 1).

Also

J+J−|a, bḿın >= (J2 − J2
z + Jz)|a, bḿın〉 = 0

so
a = bḿın(bḿın − 1).

Finally

bmáx(bmáx + 1) = bḿın(bḿın − 1) ⇒ bmáx = −bḿın.

Furthermore, for some integer n

(J+)n|a, bḿın〉 ∼ |a, bmáx〉.

bmáx = bḿın + n⇒ bmáx =
n

2
⇒ a =

n

2
(
n

2
+ 1)



Define j ≡ n
2 such that bmáx = j y a = j(j + 1). On the other

side bḿın = −j and bmáx − bḿın = n, hence b = m where
m = −j ,−j + 1, ..., j − 1, j .
In this notation

J2|j ,m〉 = j(j + 1)|j ,m〉, Jz |j ,m〉 = m|j ,m〉
As to the raising operator

J+|jm〉 = Cjm|j ,m + 1〉.
But

〈jm|(J+)†J+|jm〉 = |Cjm|2 = 〈jm|J2−J2
z−Jz |jm〉 = [j(j+1)−m(m+1)]

Assuming real coefficients (Condon-Shortley convention)

|Cjm| =
√
j(j + 1)−m(m + 1) =

√
(j −m)(j + m + 1)

J+|j ,m〉=
√

(j −m)(j + m + 1)|j ,m + 1〉
Similarly

J−|j ,m〉 =
√

(j + m)(j −m + 1)|j ,m − 1〉



Summarizing: irreps de SU(2)

J2|j ,m〉 = j(j + 1)|j ,m〉
Jz |j ,m〉 = m|j ,m〉

J±|j ,m〉 =
√

(j ∓m)(j ±m + 1)|j ,m ± 1〉

j =
n

2
,

m = −j ,−j + 1, .., j .

mj = 0 :

0

mj = 1
2 :

−1
2

1
2

mj = 1 :

−1 0 1

mj = 3
2 :

−1
2

1
2−3

2
3
2



Matrix representations

1 Notice
〈|j ′,m′|DR(n, θ)|jm〉 ∼ δj ′j

2 Irreps are characterized by j . Spanned by the set{|jm〉},
m = −j ,−j + 1, ...j .

3 These are orthogonal subspaces of dimension 2j + 1.

4 Within these subspaces the generators have the following
matrix representation

〈jm′|Jz |jm〉 = mδm′m

〈jm′|J+|jm〉 =
√

(j −m)(j + m + 1)δm′,m+1

〈jm′|J−|jm〉 =
√

(j + m)(j −m + 1)δm′,m−1

5 These are (2j + 1)× (2j + 1)matrices.



Defining representation: j = 1
2

mj = 1
2 :

−1
2

1
2

Shorthand notation: |12 ,−
1
2〉 ≡ |−〉, |

1
2 ,

1
2〉 ≡ |+〉.

J−|−〉 = 0, J−|+〉 = |−〉, J+|−〉 = |+〉, J+|+〉 = 0.

Matrix representation for j = 1
2

〈jm′|Jz |jm〉 =

(
〈+|Jz |+〉 〈+|Jz |−〉
〈−|Jz |+〉 〈−|Jz |−〉

)
=

1

2

(
1 0
0 −1

)
≡ 1

2
σz ,

〈jm′|J+|jm〉 =

(
〈+|J+|+〉 〈+|J+|−〉
〈−|J+|+〉 〈−|J+|−〉

)
=

1

2

(
0 1
0 0

)
≡ 1

2
σ+,

〈jm′|J−|jm〉 =

(
〈+|J−|+〉 〈+|J−|−〉
〈−|J−|+〉 〈−|J−|−〉

)
=

1

2

(
0 0
1 0

)
≡ 1

2
σ−.



Jx =
1

2

(
0 1
1 0

)
≡ 1

2
σx Jy =

1

2

(
0 −i
i 0

)
≡ 1

2
σy

Summarizing, for j = 1
2

J =
1

2
σ

These matrices satisfy

[σi , σj ] = 2iεijk σk , {σi , σj} = 2δij .

D( 1
2

)(n, θ) = exp(−i σ
2
· nθ) = cos

θ

2
1− iσ · n sin

θ

2
.

States are represented by two-component spinors in this basis

|+〉 →
(

1
0

)
, |−〉 →

(
0
1

)

D( 1
2

)(n, θ) are 2x2 unitary matrices of unit determinant: SU(2)



Adjoint representation: j = 1

mj = 1 :

−1 0 1

A similar calculation yields

Jx =

 0 1√
2

0
1√
2

0 1√
2

0 1√
2

0

 , Jy =

 0 − i√
2

0
i√
2

0 − i√
2

0 i√
2

0

 , Jz =

 1 0 0
0 0 0
0 0 −1

 .

These matrices are equivalent to (J̃i )jk = −iεijk

J̃x =

 0 0 0
0 0 −i
0 i 0

 , J̃y =

 0 0 i
0 0 0
−i 0 0

 , J̃z =

 0 −i 0
i 0 0
0 0 0

 .

Homework: Find the unitary matrix S connecting these
representations: J̃i = SJiS

†.

The classical vectors (e.g. r) transform in this representation



SU(2) and the spin of elementary particles.
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SU(2) and the spin of elementary particles.

j = 0: Higgs → |0, 0〉.
j = 1

2 : quarks u, d , c , s, t, b and leptons e, µ, τ ,

|e〉 =

{
|12 ,

1
2〉 ≡ |e ↑〉

|12 ,−
1
2〉 ≡ |e ↓〉

j = 1: gauge bosons: γ, W+, W−,Z 0, g .

|W 〉 =


|1, 1〉 ≡ |W ↑〉
|1, 0〉 ≡ |W →〉
|1,−1〉 ≡ |W ↓〉

Higher j : There are known composite particles transforming in
these representations but not elementary particles, except for
j = 2 graviton. Not a quantum theory so far. Not included in
these lectures.
We are familiar with the quantum description of NR spinless
particles. How do we describe spinning particles?



Homogeneous Lorentz Group: Rotations + Boosts.

HLG transformations in the classical world: Boosts along x

x ′ =
x + vt

1− v2

c2

, y ′ = y , z ′ = z , t ′ =
t + v

c2 x

1− v2

c2

.

Define β = v
c , γ = 1√

1−β2
x1 = x , x2 = y , x3 = z , x0 = ct.

Boost transformation along x1 reads

x0′ = γ(x0+βx1), x1′ = γ(βx0+βx1), x2′ = x2 x3′ = x3.

The relation γ2 − γ2β2 = 1 holds, we parametrize

γ = coshϕ, γβ = sinhϕ.

Finally 
x0′

x1′

x2′

x3′

 =


coshϕ sinhϕ 0 0
sinhϕ coshϕ 0 0

0 0 1 0
0 0 0 1




x0

x1

x2

x3

 .



In Minkowski space a boost along x is done by the matrix

Bx(ϕ) =


coshϕ sinhϕ 0 0
sinhϕ coshϕ 0 0

0 0 1 0
0 0 0 1


This is a continuous transformation. The corresponding
generator is

Kx = i
dBx

dϕ
|ϕ=0= i


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


Similarly for boosts along y and z we obtain

Ky = i


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , Kz = i


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0





Embedding rotations in Minkowski space we get

Jx =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , Jy =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , Jz =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


A general HLG transformation reads

xµ
′

= Λµν(θ,ϕ)xν

Boost generators satisfy

[Ki ,Kj ] = −iεijkJk
Boosts do not form a group...but

[Ji , Jj ] = iεijkJk

[Ji ,Kj ] = iεijkKk

[Ki ,Kj ] = −iεijkJk

Boosts and rotations form a group: Homogeneous Lorentz
Group. Rotations are a subgroup of the HLG.



Quantum realm: Irreps of the HLG.

Define

A =
1

2
(J− iK), B =

1

2
(J + iK),

These operators satisfy

[Ai ,Aj ] = iεijkAk −→ SU(2)A ← Basis : {|a,ma〉}
[Bi ,Bj ] = iεijkBk −→ SU(2)B ← Basis : {|b,mb〉}
[Ai ,Bj ] = 0

The HLG is isomorphic to : SU(2)A ⊗ SU(2)B
Basis of H = {|a,ma〉 ⊗ |b,mb〉}.
Casimir operators: {A2,B2 }.
Cartan subalgebra: {Az ,Bz}.
Irreps of dimension (2a + 1)(2b + 1) characterized by two
quantum numbers (a, b).

Λ (θ,ϕ) = e−i(J·θ+K ·ϕ) = e−i(A·(θ+iϕ)+B·(θ−iϕ))



Irreps del HLG

(0, 0)(
1
2 , 0
) (

0, 1
2

)
(1, 0) ( 1

2 ,
1
2 ) (0, 1)

( 3
2 , 0) (1, 1

2 ) ( 1
2 , 1) (0, 3

2 )

(2, 0) ( 3
2 ,

1
2 ) (1, 1) ( 1

2 ,
3
2 ) (0, 2)

Higgs

Quarks & Leptons

Gauge bosons

Graviton



Irreps del HLG

(0, 0)(
1
2 , 0
) (

0, 1
2

)
(1, 0) ( 1

2 ,
1
2 ) (0, 1)

( 3
2 , 0) (1, 1

2 ) ( 1
2 , 1) (0, 3

2 )

(2, 0) ( 3
2 ,

1
2 ) (1, 1) ( 1

2 ,
3
2 ) (0, 2)

Higgs

Quarks & Leptons

Gauge bosons

Graviton



Chiral representations: (a, 0) y (0, b)

If a = 0: (0, b) representation

A = 0 ⇒ J = iK

⇒ B =
1

2
(J + iK) = J

(0, b) = (0, j) ≡ Left representation

ΛL (θ,ϕ) = e−iJ·(θ−iϕ)

If b = 0: (a, 0) representation

B = 0 ⇒ J = −iK

⇒ A =
1

2
(J− iK) = J

(a, 0) = (j , 0) ≡ Right representation

ΛR (θ,ϕ) = e−iJ·(θ+iϕ)

Chiral representations transform identically under rotations
but have opposite transformation properties under boosts.

There are two representations with j = 1
2 .

We cannot distinguish them in the non-relativistic limit.
How is the electron in our atoms connected to these irreps?



Matrix representation of operators in the chiral irreps

Rotations have the conventional SU(2) matrix representations.
Under a boost (θ = 0) in general:

|kµ′, j〉R = BR (kµ → kµ′))|kµ, j〉R = exp(+J ·ϕ)|kµ, j〉R
|kµ′, j〉L = BL (kµ → kµ′) |kµ, j〉L = exp(−J ·ϕ)|kµ, j〉L.

For the particle rest frame kµ = (m, 0)→ kµ′ = (E ,p) :

coshϕ = γ =
E

m
, sinhϕ = γβ =

E

m

|p|
E

=
|p|
m
,

cosh
ϕ

2
=

√
E + m

2m
, sinh

ϕ

2
=

√
E −m

2m
.

For j = 1
2 we get (ϕ = nϕ):

BR (ϕ) = exp(+
σ

2
·ϕ) = cosh

ϕ

2
+ σ · n sinh

ϕ

2
=

E + m + σ · p√
2m(E + m)

BL (ϕ) = exp(−σ
2
·ϕ) = cosh

ϕ

2
− σ · n sinh

ϕ

2
=

E + m − σ · p√
2m(E + m)



The matrix representation of the states |12
1
2〉R,L and

|12 ,−
1
2〉R,L in the rest frame are

φL(0,+) =

(
1
0

)
φR(0,+)=

(
1
0

)
φL(0,−) =

(
0
1

)
φR(0,−) =

(
0
1

)

Using the boost matrices we obtain

φL(p,+) = N

(
E + m − pz
−(px + ipy )

)
φR(p,+) = N

(
E + m + pz
px + ipy

)
φL(p,−) = N

(
−(px − ipy )
E + m + pz

)
φR(p,−) = N

(
px − ipy

E + m − pz

)

with N = 1√
2m(E+m)



Parity and irreps of the HLG

Under parity

J → J , K → −K ⇒ A→ B, B→ A⇒ (a, b)↔ (b, a)

If a 6= b, the subspace (a, b) is not an irrep for parity. Need to
consider (a, b)⊕ (b, a).

In particular, for (j , 0)⊕ (0, j)

Λ(θ,ϕ) =

(
ΛR(θ,ϕ) 0

0 ΛL(θ,ϕ)

)
, ω(p, λ) =

(
φR(p, λ)
φL(p, λ)

)
.

In the rest frame, parity has the matrix representation

Π =

(
0 1
1 0

)
In this frame, states with well defined parity (π) satisfy

Πω(0, λ) = π ω(0, λ), π = ±1



Boosting this equation

B(p)[Π−π]B−1(p)B(p)ω(0) = 0⇒ [B(p)ΠB−1(p)−π]ω(p) = 0.

But under boosts

ΠKΠ = −K ⇒ Π B(p)Π = B−1(p),

The boosted parity eigenvalue equation reads

[B2(p)Π− π]ω(p) = 0.

Explicitly(
−π exp(2J · nϕ)

exp(−2J · nϕ) −π

)
ω(p, λ) = 0

For j = 1
2

exp(±2
σ

2
· nϕ) = coshϕ± σ · n sinhϕ =

E ± σ · p
m

.



For j = 1
2 the parity condition in an arbitrary frame reads(

−π E+σ·p
m

E−σ·p
m −π

)
ω(p, λ) = 0.

Defining the following matrices

γ0 =

(
0 1
1 0

)
, γi =

(
0 −σi
σi 0

)
The parity condition reads

[γµpµ − πm]ω(p, λ, π) = 0.

Dirac equation is just the covariant form of parity eigenvalue
equation in ( 1

2 , 0)⊕ (0, 1
2 ).

The γµ matrices satisfy

{γµ, γν} = 2gµν .

The explicit form of these matrices change if we change the
chosen basis for ( 1

2 , 0)⊕ (0, 1
2 ).



Configuration space: Dirac Equation

Take positive parity π = 1 and define the configuration space
”wave function”

ψ(x) = ω(p, λ, π)e−ip.x , i∂µψ(x) = pµψ(x).

It satisfies Dirac equation

[iγµ∂µ −m]ψ(x) = 0.

”Probability conservation” : ∂µJµ(r, t) = 0, with

Jµ(r, t) = ψ̄γµψ, ψ̄ ≡ ψ†γ0

”Probability density”

ρ(r, t) = ψ̄γ0ψ = ψ†ψ



HLG irreps, quirality and elementary particles

j = 0: Higgs → (0, 0). Is not chiral.

j = 1
2 : quarks u, d , c , s, t, b and leptons e, µ, τ , νi ,

|f , λ〉 →
{
|f , λ〉R → ( 1

2 , 0)
|f , λ〉L → (0, 1

2 )

Electron in atoms has positive parity (convention)

|e−, λ〉 =
1√
2

(|e, λ〉R + |e, λ〉L).

The orthogonal state has the opposite parity: antiparticle.

|e+, λ〉 =
1√
2

(|e, λ〉R + |e, λ〉L).

j = 1: gauge bosons : γ, W+, W−,Z 0, gluon. transform in
the ( 1

2 ,
1
2 ) irrep. Not chiral.



Warming up: Why do we need fields?

Because physical laws are local

Coulomb interaction: F12 = q1q2

r2
12

e12.

Action at a distance.

Change: F1 = q1E2, E2(r1) = q2

r2
12

e12.

Interaction is related to the value of fields
at a given space point r .

Fields are produced by sources. In general
they also depend on t.

A particle in an e.m. field feels the
Lorentz Force:

F (r , t) = q
(
E (r , t) +

v
c
× B(r , t)

)
.

r1

r2

r1 − r2



Why do we need quantum fields?

From E 2 = P2c2 + m2c4: Klein Gordon equation for a free
particle

~2∂
2φ(r, t)

∂t2
=
[
−~2c2∇2 + m2c4

]
φ(r , t),

or in covariant form (x0 = ct)[
∂µ∂µ +

m2c2

~2

]
φ(r, t) = 0,

”Probability conservation” : ∂µJµ(r, t) = 0, with

Jµ(r, t) =
i

~
[φ∗∂µφ− (∂µφ∗)φ] .

”Probability density”

ρ(r, t) =
i

~

[
φ∗
∂φ

∂t
− ∂φ∗

∂t
φ

]
.



Free particle solutions : φ(x) = Ne−
i
~p·x yield

E = ±
√

p2c2 + m2c4 ⇒ ρ = |N|22E

Negative energy solutions and negative probabilities. No
way.

Coupling to an electromagnetic field Aµ: Lorentz force ⇒
”minimal coupling” : P̂µ → P̂µ − q

cA
µ

[
(∂µ + i

q

~c
Aµ)(∂µ + i

q

~c
Aµ) +

m2c2

~2

]
φ(r, t) = 0.

Complex conjugated equation[
(∂µ − i

q

~c
Aµ)(∂µ − i

q

~c
Aµ) +

m2c2

~2

]
φ∗(r, t) = 0.



Notice:

If φ is a solution for a particle of charge q and mass m then
φ∗ is a solution for a particle of charge −q and same mass (
”anti-particle” ).

These solutions cannot be equal (describe particles with the
opposite charge). Both are solutions of the free KG equation
with mass m.

Conclusion: KG equation describes multiparticle states, at
least a pair of particles with same mass and opposite charge.

Single particle relativistic quantum mechanics is not tenable.

Multiparticle RQM= Quantum Fields



Dirac equation and charge conjugation

Consider a Dirac particle in an external e.m. field

[iγµ(∂µ −
ie

c
Aµ)−m]ψ(x) = 0.

The conjugate field ψc = iγ2ψ∗ satisfy

[iγµ(∂µ+
ie

c
Aµ)−m]ψc(x) = 0.

ψc describes a state with the same mass and spin but opposite
quantum numbers p, π, λ and electric charge: antiparticle.

Conclusion: Dirac equation describes multiparticle states, at
least a pair of particles.

Single particle relativistic quantum mechanics is not tenable.

Multiparticle RQM= Quantum Field Theory



Natural units

Fundamental constants and units:

[~] = Et, [c] = L/t, [~c] = EL, [mc2] = E , [kBT ] = E

Time, lenght, mass and temperature

[
~
E

] = t, [
~c
E

] = L, [
E

c2
] = m, [

E

kB
] = T

Fundamental constants apart we get

t = [
1

E
], L = [

1

E
], m = [E ], T = [E ]

Basic conversion factors:

1seg = 1,5× 1024GeV−1~
1m = 5× 1015GeV−1~c

1Kg = 5,62× 1026GeV /c2

H0 = 1,53× 10−42GeV /~
GF = 1,16× 10−5GeV−2(~c)3

MP = 1,22× 1019GeV /c2



From point particles to classical fields

Point particles:

Lagrangian and Action

L = L(qr , q̇r , t), S =

∫
L(qr , q̇r , t)dt

Equation of motion

δS = 0 ⇒ d

dt
(
∂L

∂q̇r
)− ∂L

∂qr
= 0

Classical fields:

t → xµ, qr → φr (xµ), L(φr , ∂
µφr ) =

∫
L(φr , ∂

µφr )d3x

Equation of motion: S =
∫
L(φr , ∂

µφr )d4x

δS = 0 ⇒ ∂

∂xµ
(

∂L
∂(∂µφr )

)− ∂L
∂φr

= 0.



Klein-Gordon Lagrangian: complex scalar field

L = ∂µφ∗∂µφ−m2φ∗φ+Ω

∂L
∂(∂µφ∗)

= ∂µφ,
∂L
∂φ∗

= −m2φ

∂L
∂(∂µφ)

= ∂µφ
∗,

∂L
∂φ

= −m2φ∗

Euler-Lagrange equations for φ∗ and φ yield

(∂µ∂µ + m2)φ = 0

(∂µ∂µ + m2)φ∗ = 0



Conserved currents

Noether’s theorem

Every continuous symmetry of the action yields a conserved
current ∂µJµ = 0.

Consider the transformation of the fields: δφr ≡ Xr (φ). If δS = 0
then the Lagrangian density can change at most by a total
divergence δL = ∂µFµ(φ). But

δL =
∂L
∂φr

δφr +
∂L

∂(∂µφr )
δ(∂µφr )

= (
∂L
∂φr
− ∂µ ∂L

∂(∂µφr )
)δφr + ∂µ(

∂L
∂(∂µφr )

δφr ).

Thus

∂µ
(

∂L
∂(∂µφr )

Xr (φ)− Fµ(φ)

)
= 0.



Conserved charges

Current conservation

∂J0

∂t
= −∇ · J

Integrating in a given volume∫
V
d3x

∂J0

∂t
=

d

dt

∫
V
d3xJ0 = −

∫
V
d3x∇ · J= −

∫
S
J · da

thus the charge

Q ≡
∫

d3xJ0

is a locally conserved quantity.



Space-time translations

Space-time translations: xµ → xµ + εµ

φr → φr + εµ∂µφr ⇒ δφr = εµ∂µφr = Xr .

L → L+ εµ∂µL ⇒ δL = ∂µ(εµL)⇒ Fµ = εµL.

Noether’s current

Jµ =
∂L

∂(∂µφr )
εα∂αφr − εµL

There is a conserved current for each value of εν

Tµ
ν =

∂L
∂(∂µφr )

∂νφr − gµνL, ∂µT
µ
ν = 0.

Conserved charges: energy and momentum

E =

∫
d3xT 0

0 =

∫
d3x(

∂L
∂(∂0φr )

∂0φr − L),

Pi =

∫
d3xT 0

i =

∫
d3x

∂L
∂(∂0φr )

∂iφr .



For the KG field

L = ∂µφ∗∂µφ−m2φ∗φ+Ω

E =

∫
d3x [∂0φ∗∂0φ+∇φ∗ ·∇φ+ m2φ∗φ−Ω],

Pi =

∫
d3x [∂0φ∗∂iφ+ ∂iφ

∗∂0φ].

Internal symmetries:U(1)

The KG Lagrangian is invariant under global U(1) transformations

φ→ φ′ = U(θ)φ ≡ e−iqθφ ⇒ δφ = −iqθφ, δφ∗ = iqθφ∗

The Noether current is

Jµ = iq(
∂L

∂(∂µφ∗)
φ∗ − ∂L

∂(∂µφ)
φ)

= iq(φ∗∂µφ− (∂µφ∗)φ)



Hamiltonian formalism

Calculate the momentum density

πr (x) ≡ ∂L
∂(∂0φr )

.

Define the Hamiltonian density as

H(φr , πr ) = πr φ̇r − L.

where L and φ̇r are written in terms of πr and φr .

Hamilton equations

φ̇r =
∂H
∂πr

, π̇r = − ∂H
∂φr

For the KG field (Excercise 1)

H(φ, φ†, π, π†) = π†π +∇φ† ·∇φ+ m2φ†φ−Ω.

Notice this is a positive difinite quantity!



Quantization of a complex scalar field

The classical field satisfies KG equations whose solutions are

φ(x) =

∫
d3p√

(2π)32Ep
[ape

i p.x + b†pe
−i p.x ]

φ†(x) =

∫
d3p√

(2π)32Ep
[a†pe

−i p.x + bpe
i p.x ],

with Ep =
√

p2 + m2. The corresponding momenta are

π(x) ≡ ∂L
∂(∂0φ)

= φ̇†(x), π†(x) ≡ ∂L
∂(∂0φ†)

= φ̇(x).

Quantization

Consider φ and φ† as operators ⇒ promote ap and bp to operators.



In NRQM, the Heisenberg picture operators Xi (t), Pj(t) satisfy

[Xi (t),Pj(t)] = i~δij , [Xi (t),Xj(t)] = 0, [Pi (t),Pj(t)] = 0.

Field quantization is realized imposing the equal time commutation
relations

[φi (x , t), πj(y , t)] = iδijδ(x − y),

[φi (x , t), φj(y , t)] = 0, [πi (x , t), πj(y , t)] = 0.

These commutators require

[ap, a
†
q ]= δ3(p − q), [ap, aq ] = 0, [a†p, a

†
q ] = 0,

[bp, b
†
q ]= δ3(p − q), [bp, bq ] = 0, [b†p, b

†
q ] = 0,

[ap, bq ] = 0, [ap, b
†
q ] = 0, [a†p, bq ] = 0, [a†p, b

†
q ] = 0.



Homework

Write

φ(x) =

∫
d3p[apf

∗
p (x) + b†pfp(x)], fp(x) ≡ e−i p.x√

(2π)32Ep

Show that (F
←→
∂0G ≡ F∂0G − (∂0F )G )

〈fp|fq〉 ≡
∫

d3xf ∗p (x)i
←→
∂0 fq(x) = δ3(q − p).

Use this relation to show that

aq =

∫
d3xφ(x)i

←→
∂0 fq(x), a†q =

∫
d3xf ∗q (x)i

←→
∂0φ†(x)

bq =

∫
d3xφ†(x)i

←→
∂0 fq(x), b†q =

∫
d3xf ∗q (x)i

←→
∂0φ(x)

Use these results to calculate the commutators in the previous
slide.



Noether’s charges

A straightforward calculation yields

H ≡
∫

[φ̇†φ̇+∇φ† ·∇φ+ m2φ†φ−Ω]d3x

=

∫
d3p Ep

(
a†pap +

1

2
δ3(0) + b†pbp +

1

2
δ3(0)

)
−ΩV

P =

∫
d3x [φ̇†∇φ+ (∇φ†)φ̇]

=

∫
d3p p

(
a†pap+

1

2
+ b†pbp+

1

2

)
,

Q = q

∫
d3xφ†i

←→
∂0φ = q

∫
d3p

(
a†pap − b†pbp

)
,

These operators commute with each other

[H,P] = 0, [H,Q] = 0, [Q,P] = 0.



Defining Na
p ≡ a†pap and Nb

p = b†pbp we get

[Na
p ,N

b
q ] = 0, [Na

p ,N
a
q ] = 0, [Nb

p ,N
b
q ] = 0

[Na
p , a
†
q ] = a†pδ

3(p − q), [Na
p , aq ] = −apδ

3(p − q),

[Nb
p , b
†
q ] = b†pδ

3(p − q), [Nb
p , bq ] = −bpδ

3(p − q).

Define now the total N operators

Na =

∫
d3p a†pap, Nb =

∫
d3p b†pbp.

Notice that Q = q(Na − Nb). These operators satisfy

[Na,Nb] = 0, [Na,b,H] = 0, [Na,b,P] = 0, [Na,b,Q] = 0.

The operators {H,P,Q,Na,Nb} form a complete set of
commuting operators

Quantum states are labelled by their eigenvalues (good quantum
numbers): |E ,p, q(na − nb), na, nb〉.



Harmonic oscillator in NRQM: Brief review

H =
p2

2m
+

1

2
mω2x2 = (a†a +

1

2
)~ω, a ≡

√
mω

2~

(
x +

ip

mω

)
Ladder operators satisfy [a, a†] = 1 . Define the number operator as

N ≡ a†a ⇒ [N, a†] = a†, [N, a] = −a.

Eigenstates of the number operator

N|n〉 = n|n〉 ⇒ Na†|n〉 = (n + 1)a†|n〉, Na|n〉 = (n − 1)a|n〉

Hamiltonian positive difinite ⇒ n = 0, 1, 2, ...

H|n〉 = (n +
1

2
)~ω|n〉 |n〉 =

(a†)n√
n!
|0〉, a|0〉 = 0

The ground state |0〉 has nonvanishing energy E = ~ω/2.



Interpretation

The KG field consists of a collection of HO’s, two (a or b) for
each value of p.
The ground state of the p-HO satisfy

Na
p |0p〉a = 0, Nb

p |0p〉b = 0.

Denote the collective ground state by |0〉 = Π⊗p |0p〉
For the ground state we get

Na|0〉 =

∫
d3p Na

p|0〉= 0, Nb|0〉 =

∫
d3p Nb

p |0〉= 0

H|0〉 =

[∫
d3p Ep(Na

p + Nb
p + δ3(0))− ΩV

]
|0〉≡ (E0 − Ω)V |0〉,

P|0〉 =

∫
d3p p(Na

p + Nb
p )|0〉= 0,

Q|0〉 = q

∫
d3p(Na

p − Nb
p )|0〉= 0.



Energy of the ground state

The zero-point energy of the harmonic oscillators yield∫
d3p Epδ

3(0) =

∫
d3p Ep

∫
d3x

(2π)3
e iq.x |q=0 =

V

(2π)3

∫
d3p Ep

This is formally an infinite amount of energy.

However, we have learnt that our theories are valid only up to
some energy (effective theories).

We expect QFT description to be appropriate up to some
energy scale Λ� m. The corresponding energy density is

E0 =

∫
d3p

(2π)3
Ep =

4π

(2π)3

∫ Λ

m

√
E 2 −m2E 2dE =

Λ4

8π2
.

Choose Ω = E0

H =

∫
d3p Ep(Na

p + Nb
p ), H|0〉 = 0.



First excited states: sectors (na, nb) = (1, 0), (0, 1)

There are two types of first excited states

a†p|0〉, b†q |0〉.

Acting on them with the H and P we get

Ha†q |0〉 =

∫
d3p EpN

a
pa
†
q |0〉 =

∫
d3p Ep[Na

p , a
†
q ]|0〉= Eqa

†
q |0〉,

Hb†q |0〉 =

∫
d3p EpN

b
pb
†
q |0〉 =

∫
d3p Ep[Nb

p , b
†
q ]|0〉= Eqb

†
q |0〉,

Pa†q |0〉 =

∫
d3p pNa

pa
†
q |0〉 =

∫
d3p p[Na

p , a
†
q ]|0〉= qa†q |0〉,

Pb†q |0〉 =

∫
d3p pNb

pb
†
q |0〉 =

∫
d3p p[Nb

p , b
†
q ]|0〉= qb†q |0〉, ...

These states are eigenstates of the H and P with the same
energy and momentum (hence same mass).



But they have opposite U(1) charge eigenvalues...

Qa†q |0〉 = q

∫
d3pNa

pa
†
q |0〉 = q

∫
d3p [Na

p , a
†
q ]|0〉= qa†q |0〉,

Qb†q |0〉 = −q
∫

d3pNb
pb
†
q |0〉 = −q

∫
d3p [Nb

p , b
†
q ]|0〉= −qb†q |0〉.

...and different Na,Nb eigenvalues

Naa†q |0〉 =

∫
d3pNa

pa
†
q |0〉 =

∫
d3p [Na

p , a
†
q ]|0〉= a†q |0〉,

Nab†q |0〉= 0, Nba†q |0〉 = 0,

Nbb†q |0〉 =

∫
d3pNb

pb
†
q |0〉 =

∫
d3p [Nb

p , b
†
q ]|0〉= b†q |0〉.

Finally

a†p|0〉 = |E ,p, q, 1, 0〉 ≡ |p〉a, b†p|0〉 = |E ,p,−q, 0, 1〉 ≡ |p〉b



The state |p〉a ≡ a†p|0〉 describes a ”quantum” (particle) with
momentum p, energy Ep mass m and U(1) charge q.

The state |p〉b ≡ b†p|0〉 describes a ”quantum” with momentum p,
energy Ep mass m and U(1) charge −q: anti-particle!!!

Normalization of single particle states

〈p|q〉 = 〈0|apa
†
q |0〉 = 〈0|[ap, a

†
q ]|0〉 = δ3(p − q).

Vacuum-to-single-particle transition amplitude induced by the
field

〈q|φ†(x)|0〉 = 〈q|
∫

d3p√
(2π)32Ep

[a†pe
−i p.x + bpe

i p.x ]|0〉

=

∫
d3p√

(2π)32Ep
〈q|a†p|0〉e−i p.x =

e−i q.x√
(2π)32Eq

.



Sector with two particles: (na, nb) = (2, 0), (1, 1), (0, 2)

Sucesively acting with two creation operators two-particle
excited states:

|p1,p2〉aa = a†p1
a†p2
|0〉, |p1,p2〉ab = a†p1

b†p2
|0〉

|p1,p2〉ba = b†p1
a†p2
|0〉, |p1,p2〉bb = b†p1

b†p2
|0〉,

[a†pi , a
†
pj ] = 0, [b†pi , b

†
pj ] = 0 ⇒ Bose statistics.

The Na,b operators count the total number of each type of
quanta e.g.

Naa†p1
a†p2
|0〉 =

∫
d3p Na

pa
†
p1
a†p2
|0〉

=

∫
d3p [δ3(p − p1)a†p + a†p1

Na
p ]a†p2

|0〉

= 2a†p1
a†p2
|0〉



Energy and momentum are additive quantum numbers, e.g.

Ha†p1
a†p2
|0〉 =

∫
d3pEp Na

pa
†
p1
a†p2
|0〉

=

∫
d3p Ep[δ3(p − p1)a†p + a†p1

Na
p ]a†p2

|0〉

= (Ep1 + Ep2)a†p1
a†p2
|0〉

Vacuum-to-two-particle-states transition is done by the
product of two fields e.g. (dp̃ ≡ d3p, fp(x) ≡ e ip.x√

(2π)32E
)

φ†(x)φ(y)|0〉 =

∫
dp̃dk̃[a†pf

∗
p (x) + bpfp(x)][ak fk(y) + b†k f

∗
k (y)]|0〉

=

∫
dp̃dk̃[f ∗p (x)f ∗k (y)a†pb

†
k |0〉+

∫
dp̃fp(x)f ∗p (y)|0〉

Products of n fields acting on the vacuum produces n-particle
states like |p1,p2,p3...〉a = a†p1a

†
p2a
†
p3...|0〉

[a†pi , a
†
pj ] = 0 ⇒ scalar particles obey Bose statistics.



Summary

1 Elementary particles are quantum systems.
2 As such, they are characterized by the good quantum

numbers corresponding to the eigenvalues of the Hamiltonian,
the Casimir Operators and the operators in the Cartan
sub-algebra of the full symmetry group.

3 For free particles the obvious symmetries are are rotations,
boosts and space-time translations.

4 We obtained the irreps of rotations SU(2): Spin.
5 We worked out the irreps of the HLG and HLG+Parity: Spin,

Quirality and Dirac equation.
6 The full symmetry group is the Poincarè group. No time for

this, but the Casimir operators yield two quantum numbers:
mass and spin.

7 Single particle RQM is not tenable.
8 Quantum Field Theory allows us to follow this construction.

Quantum theory of multi-particle states.


