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Minimal coupling in classical mechanics.

Maxwell equations (c.g.s. units α = e2/4π~c ' 1/137)

∇ · E = ρ, ∇ · B = 0,

∇× E +
1

c

∂B
∂t

= 0, ∇× B − 1

c

∂E
∂t

=
1

c
j

∇ · B = 0 ⇒ B = ∇× A

∇× E +
1

c

∂B
∂t

= 0 ⇒ E = −∇φ− 1

c

∂A
∂t

∇ · E = ρ ⇒ �φ− 1

c

∂

∂t

(
1

c

∂φ

∂t
+ ∇ · A

)
= ρ,

∇× B − 1

c

∂E
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=
1

c
j ⇒ �A−∇

(
1

c

∂φ

∂t
+ ∇ · A

)
=

1

c
j .

Remark: φ and A are not unique: φ′ = φ+ 1
c
∂Λ
∂t , A′ = A−∇Λ

with arbitrary Λ(r , t) yield the same fields E ,B: Gauge invariance.



Covariant formulation

Define F i0 = Ei = −F 0i , F ij = −εijkBk = −F ji , jν = (cρ, j )

∇ · E = ρ, ∇× B − 1

c

∂E
∂t

=
1

c
j ⇔ ∂µF

µν =
1

c
jν ,

∇ · B = 0, ∇× E +
1

c

∂B
∂t

= 0 ⇔ ∂ρFµν + ∂µF νρ + ∂νF ρµ = 0.

In terms of the potential four-vector Aµ = (φ,A)

E = −∇φ− 1
c
∂A
∂t

B = ∇× A
} ⇔ Fµν = ∂µAν − ∂νAµ.

Equations of motion in terms of Aµ:

∂µF
µν =

1

c
jν ⇔ �Aν − ∂ν(∂µA

µ) =
1

c
jν

Electromagnetic currents are conserved

∂ν∂µF
µν = 0 ⇒ ∂ν j

ν = 0.



Gauge invariance:

φ′ = φ+
1

c

∂Λ

∂t
, A′ = A−∇Λ ⇔ A′µ = Aµ + ∂µΛ.

F is invariant under this transformation : (Fµν)′ = Fµν .
The e.o.m. takes its simplest form if ∂ ·A = 0 (Lorentz gauge):

�Aν = jν/c

If Aµ is not in this gauge we work with A′µ = Aµ + ∂µΛ with Λ
chosen such that �Λ = −∂µAµ.
Lorentz gauge does not completely removes the gauge
freedom. If Aµ satisfies ∂ · A = 0 so do it A′µ = Aµ + ∂µf
whenever f satisfies �f = 0.
For Aµ in the class of Lorentz gauges (∂ · A = 0) we can
always choose A0 = 0.
This leave us with the conditions (Coulomb gauge)

A0 = 0, ∇ · A = 0,

The electromagnetic field has only two d.o.f.



Charged particle in an electromagnetic field

Newton equation + Lorentz force yields

m
d2r
dt2

= q
(
E +

v
c
× B

)
= q

(
−∇φ− 1

c

∂A
∂t

+
v
c
×∇× A

)
.

But A = A(r , t) thus

dA
dt

=
∂A
∂t

+ (v ·∇)A

(v ×∇× A)i = v · ∂iA− (v ·∇)Ai .

The e.o.m. can be rewritten as

d

dt
(mẋi +

q

c
Ai ) = −q∂iφ+

q

c
ẋj∂iAj

A suitable Lagrangian for this equation is

L(r , ṙ , t) =
1

2
mṙ2 − qφ+

q

c
ṙ · A.



The corresponding Hamiltonian is

H(r ,p, t) = p · ṙ − L(r , ṙ , t)

with the canonical conjugate momentum

pi ≡
∂L

∂ẋi
= mẋi +

q

c
Ai .

Finally

H(r ,p, t) = p ·
p − q

c A
m

− 1

2
m

(p − q
c A)2

m2
+ qφ− q

c

p − q
c A

m
· A

H − qφ=
(p − q

c A)2

2m

Minimal Coupling

The Hamiltonian describing the classical dynamics of a particle of
charge q in an external electromagnetic field is obtained from the
free particle description replacing H → H − qφ, p → p − q

c A, or in
covariant notation, pµ → pµ − q

c A
µ.



Gauge invariance

Consider a theory with a global symmetry, e.g.

L = ψ̄(x)[iγµ∂µ −m]ψ(x)

Invariant under ψ → ψ′ = U(Λ)ψ ≡ e−iqΛψ with Λ = cte.

Notice: homogeneous transformation ∂µ(U(Λ)ψ) = U(Λ)∂µψ.

Noether’s theorem: there is a conserved charge associated to
this symmetry.

Yang-Mills (1954): global symmetries are not consistent with
the concept of localized fields ⇒ Local Symmetries.

ψ → ψ′(x) = U(Λ(x))ψ(x) = e−iqΛ(x)ψ(x)

Problem: non-homogeneous transformation

∂µψ
′ = U(Λ(x))(∂µ − iq∂µΛ)ψ 6= U(Λ(x))∂µψ.

The theory is not invariant.



Is there a way to get an homogeneous transformation

(Dµψ(x))′ = U(Λ(x))Dµψ(x)?

Covariance requires Dµ = ∂µ + Bµ(x)

(Dµψ(x))′ = D ′µψ
′(x) = (∂µ + B ′µ)[U(x)ψ(x)]

= [U(x)∂µ + ∂µU(x) + B ′µU(x)]ψ(x)

= U(x)[∂µ + U−1(x)∂µU(x) + U−1(x)B ′µU(x)]ψ(x)

= U(x)(∂µ + Bµ)ψ(x).

Homogeneous transformation requires

U−1∂µU + U−1B ′µU = Bµ ⇒ B ′µ = UBµU
−1 − (∂µU)U−1

In our case U = e−iqΛ(x) is a complex number thus

B ′µ = Bµ + iq∂µΛ(x)

Defining Bµ = iqAµ we get

A′µ = Aµ + ∂µΛ.



This is identical to the gauge transformation property of the
Maxwell field.
The covariant derivative Dµ = ∂µ + iqAµ is just the minimal
coupling recipe (Lorentz force)
Local gauge invariance principle connects the local phase to
two separate properties of the photon field: gauge invariance
and minimal coupling.
Kinetic term for this vector field?. Two possible terms FµνFµν
and εµναβF

µνFαβ ≡ Fµν F̃µν .
But Fµν F̃µν violates parity and time reversal!

Lfree
A = −1

4
FµνFµν + m2

AA
µAµ.

But the mA term breaks gauge invariance!

Local gauge invariance uniquely dictates the QED Lagrangian

LQED = ψ̄(x)[iγµ(∂µ+iqAµ)−m]ψ(x)−1

4
FµνFµν



Similar considerations for the complex scalar field yield the
following Lagrangian for scalar electrodynamics

L = (∂µ−iqAµ)φ∗(∂µ+iqAµ)φ−m2φ∗φ−1

4
FµνFµν

Some remarks
1 The charge q plays a double role:

It is a measure of the strength of the interaction
It is a measure of the size of the local transformation

2 The magnitude of the charge is not fixed by the local
transformation. It can be different for different fields.

3 The Lagrangian is still invariant under global transformations
U = e−iκθ with constant θ.

4 There is a corresponding conserved charge

Q = κ(Na − Nb).

κ can be identified with the electric charge or with other
conserved quantity: baryonic number, leptonic number etc.



More remarks
1 In QFT fields are operators, they transform as ψ′ = U†ψU.

[Q, ψ(x)] = κ[Na − Nb, ψ]

= κ
∑
λ

∫
d3p

(
upλfp(x)[Na, apλ]− vpλf

∗
p (x)[Nb, b†pλ]

)
= −κψ(x).

2 Similarly [Q, ψ̄(x)] = κψ̄(x).
3 Considering U(θ) = e−iQθ and infinitesimal transformations

ψ′ = (1 + iQθ)ψ(1− iQθ) = ψ + iθ[Q, ψ] +O(θ2)

= (1− iκθ)ψ ⇒ U†(θ)ψU(θ) = e−iκθψ.

4 In QFT the local transformation is done by U(θ) = e−iQθ.
5 For κ = q, it is convenient to normalize q = eqf (e > 0 ) and

the covariant derivative is Dµ = ∂µ + ieQAµ, where now
Q = qf (Na − Nb) and U(θ) = e−ieQθ.



There is a term for every charged fermion. Denoting the
fermionic field with the name of the corresponding particle

LQED = ē(x)[iγµ(∂µ + ieQeAµ)−me ]e(x)

+ū(x)[iγµ(∂µ + ieQuAµ)−mu]u(x) + ....− 1

4
FµνFµν

More compact notation: Denoting the fermionic field of the
kind i as fi we get

LQED =
∑

i

f̄i (x)[iγµ(∂µ + ieQiAµ)−mi ]fi (x)− 1

4
FµνFµν .

Split into free particle and interaction terms

L(x) =
∑

f

f̄ (x)[iγµ∂µ −mf ]f (x)− 1

4
FµνFµν −

1

2α
(∂ · A)2

−
∑

f

eqf f̄ (x)γµAµ(x)f (x)



Observables: Cross sections, decay widths

The cross section for the process 1 + 2→ 3 + 4 + ...+ n is

dσ =
(2π)4δ4(p1 + p2 −

∑n
i=3 pi )|Mfi |2

4
√

(p1 · p2)2 −m2
1m

2
2

d3p3

(2π)32E3

d3p4

(2π)32E4
...

d3pn

(2π)32En

The decay width of a particle 1→ 2 + 3 + ...+ n is obtained as

dΓ =
(2π)4δ4(p1 −

∑n
i=2 pi )|Mfi |2

2E1

d3p2

(2π)32E2

d3p3

(2π)32E3
...

d3pn

(2π)32En

The invariant amplitude Mfi is calculated perturbatively with the
Feynman Rules



Feynman Rules

The invariant amplitude is expanded in powers of the coupling
constant

M = αM1 + α2M2 + ...

where α = g2/4π << 1.
Terms in this series can be mapped to Feynman diagrams.
Feynman diagrams are constructed from Feynman Rules (FR).
There is a term in the FR for every factor in the Lagrangian.
Consider QED of leptons (f = e−, νe , µ

−, νµ)

L(x) =
∑

f

f̄ (x)[iγµ∂µ −mf ]f (x)− 1

4
FµνFµν −

1

2α
(∂ · A)2

−
∑

f

eqf f̄ (x)γµAµ(x)f (x)

Propagators=i(kinetic term operator)−1 in momentum space.
Vertex= −iLint in momentum space.



Feynman Rules for Quantum Electrodynamics (α = 1)

f (p, λ)

u(p, λ)

f̄ (p, λ)

v̄(p, λ)

γ(k , µ)

εµ(k , λ)

f (p, λ) ū(p, λ)

f̄ (p, λ) v(p, λ)

γ(k , µ) ε∗µ(k , λ)

p
i /p+m

p2−m2+iε

µ q ν
i −gµν

q2+iε

f f

µ

ieqf γ
µ

The contributions to the amplitude for a specific process are given
by all the diagrams that can be drawn with the corresponding
initial and final states.



Non-abelian gauge invariance

Take N species of fermion fields fj , j = 1...N

L =
N∑

i=1

f̄j [iγ
µ∂µ −mj ]fj = f̄ [iγµ∂µ −Mf ]f

with Mf = Diag(m1,m2, ...,mN) and f̄ = (f̄1, f̄2, ..., f̄N).

In the case mi = mj = m, Mf = m1N×N and this (free)
Lagrangian is invariante under the global SU(N)

f → f ′ = Uf = e−iT aθa
f , U ∈ SU(N)

What if we assume local SU(N) symmetry: θa(x)?

Fermion fields do not transform homogeneously

∂µf
′ = ∂µ[U(x)f ] = (U∂µ+∂µU)f = U(∂µ+U−1∂µU)f 6= U(x)∂µf



Homogeneous covariant derivative: Dµf = (∂µ + igAµ)f :

D ′µf
′ = (∂µ + igA′µ)U(x)f = U[(∂µ + U−1∂µU) + igU−1A′µU]f

= UDµf = U(∂µ + igAµ)f ,

The vector gauge fields must satisfy

U−1∂µU + igU−1A′µU = igAµ

Change under the gauge transformation according to

A′µ = UAµU
−1 +

i

g
(∂µU)U−1.

Thus A is a SU(N)-valued vector field. The simplest
realization is

Aµ = T aAa
µ.

Kinetic term for the N vector Fields Aa
µ? Notice

D ′µf
′ = UDµf = UDµU

−1Uf = UDµU
−1f ′.



The operator Dµ transforms covariantly D ′µ = UDµU
−1.

Define the field

Fµν =
−i
g

[Dµ,Dν)] = ∂µAν − ∂νAµ + ig [Aµ,Aν ]

it also transforms covariantly

F ′µν = UFµνU
−1

Fµν is strictly invariant only for U(1) transformations.
A gauge invariant kinetic term can be constructed as

LA = −1

2
Tr(FµνFµν).

Notice

Fµν = ∂µT
aAa

ν − ∂νT aAa
µ + ig [T bAb

µ,T
cAc

ν ]

= T a(∂µA
a
ν − ∂νAa

µ − g fabcA
b
µA

c
ν) ≡ T aF a

µν ,

where we used the group algebra [T a,T b] = i fabcT
c with

fabc antisymmetric.



We use group generators normalized as Tr(T aTb) = 1
2δ

ab.

With these conventions

LA = −1

2
Tr(FµνFµν) = −1

4
F aµνF a

µν .

Again, a possible mass term for the gauge fields is forbidden
by gauge invariance.

The gauge invariant Lagrangian

L = f̄ [(iγµ(∂µ1 + igAa
µT

a)−m1]f − 1

2
Tr(FµνFµν)



Sumarizing

Local SU(N) gauge invariance requires the existence of N
vector fields Aa

µ

It does fix the masses of fermion fields up to a global constant
Mf = m1N×N

Dynamics is dictated by the local gauge symmetry. We have
N gauge fields but only one coupling constant g .

Gauge transformations

f → f ′ = Uf = e−iT aθa(x)f , A′µ = UAµU
−1 +

i

g
(∂µU)U−1

Gauge invariant Lagrangian

L = f̄ [(iγµ∂µ −m)1]f − 1

2
Tr(FµνFµν)−g f̄ [γµAa

µT
a]f



Weak interactions: Fermi theory

Nuclei are composed of protons and neutrons.

Nuclear beta decay related to nucleon decay n→ pe−ν̄.

Fermi (1933): Following the current-current electromagnetic
structure

Lint =
GV√

2
p̄γµn ēγµν + h.c.

Neutron beta decay n(p1)→ e(p2)ν̄(p3)p(p4) is induced by
the following Feynman diagram

n(p1)

e−(p2)

ν̄(p3)

p(p4)



A calculation of the decay width yields

Γ =
G 2

V (mn −mp)5

30(2π)3

The measured mean time-life of the neutron is τn = 881,5 seg ,
thus the corresponding decay width is

Γn
exp =

~
τ

=
6,582× 10−25GeV

881,5
= 7,46× 10−28GeV

Using mp = 938,272 MeV , mn = 939,565 MeV we get

GV = 3,9× 10−5GeV−2.

This crude estimate yields a very small coupling. Interaction is
really weak.



1 Other structures posible: p̄Γin ēΓiν with Γi = 1, γ5, γµγ5, σµν .

2 The scalar, vector and axial-vector currents yield similar
couplings G ≈ 10−5.

3 Contact interaction yields a GV δ(x) potential. Short range
interaction.

4 EM interaction involve the exchange of virtual photons. Long
range interactions V (r) = e2/r corresponding to a 1/q2

propagator.

5 The propagator for a massive particle goes like 1/(q2 −M2).
The range of the potential is of the order of 1/M.

6 At low energies (q2 << M2), it yields a point interaction with
coupling ∼ 1/M2 << 1.

7 Is this happening for weak interactions? Can weak interaction
be produced by the exchange of a new massive particle? 1

1T.D.Lee, M. Rosenbluth, C.N.Yang; Phys.Rev.75 (1949) 9905.



Weak interactions: Intermediate Vector Boson

n(p1) V−

e−(p2)

ν̄(p3)

p(p4)

The QED-like interacting lagrangian is

Lint = gV (p̄γµn + ēγµν)V−µ

It yields the following amplitude (k = (p1 − p4)2)

−iM = ū(4)[igV γ
µ]u(1)[i

−gµν + kµkν/m
2
W

k2 −M2
V + iε

ū(2)[igV γ
ν ]v(3)

k2<<M2
V−→ i

g2
V

M2
V

ū(4)γµu(1)ū(2)γµv(3)



This is a Fermi interaction with

GV√
2

=
g2

V

M2
V

⇒ M2
V =

√
2g2

V

GV

Assuming QED-like coupling
g2

V
4π ≈ 10−2 we obtain

MV =

√√
2g2

V

GV
≈ 67 GeV

Promising scheme. Including the muon-neutrino interaction it
predicts muon decay

Lint = gV (p̄γµn + ēγµν + µ̄γαν)V−α

µ(p1) V−

e−(p2)

ν̄(p3)

ν(p4)



The decay width in this case is given by

Γ =
1

8(2π)3

2g4
Vm5

µ

12M4
V

=
G 2

Vm5
µ

96(2π)3
.

The measured muon lifetime is τµ = 2,197× 10−6seg
corresponding to a decay width Γµexp = 3× 10−19GeV .

Using mµ = 0,105658GeV we get

GV =

√
96(2π)3Γµexp

m5
µ

= 2,36× 10−5 GeV−2.

Similar coupling supports the idea but fine tuning is
needed.



The τ − θ puzzle

1 The τ and θ mesons were discovered in cosmic ray
experiments in 1947.

2 They have identical masses (m = 493,6 MeV ) and lifetime (
τ = 1,23× 10−8seg) but different decay modes.

θ → π+π0, τ → π+π−π+

3 Dalitz (1953): Parity(2π)= +1 and Parity(3π)= −1 .
Identified as different particles.

4 Lee-Yang (1956): Consequences of parity violation in beta
decays and other weak processes.

5 Suggest possible experimental tests of parity violation in Co60

beta decay, µ beta decay and π → eν̄.
6 C.S. Wu et. al. (1957): High parity violation in Co60 beta

decay. Lederman et. al.(1957), Telegdi et.al. (1957): Strong
violation of parity in the chain π → µν̄ → eν̄νν̄.

7 τ = θ (now named K+) and parity is strongly violated.



V-A structure of weak interaction

1 Marshak and Sudarshan (1957): available data suggest
maximal parity violation for leptons. V − A Lorentz structure.

Lint =
GN√

2
[p̄γµ(1−

gA

gV
γ5)n][ēγµ(1− γ5)ν] +

GF√
2

[µ̄γµ(1− γ5)ν][ēγµ(1− γ5)ν] + h.c.

2 The decay width in this framework is

Γ =
1

8(2π)3

G 2
Fm

5
µ

3
.

3 The corresponding Fermi constant from the measured muon
lifetime is

GF =

√
192π3Γµexp

m5
µ

= 1,16× 10−5 GeV−2.



Similarly the decay width for the neutron beta decay is given
by (ρ = gA

gV
)

Γ =
G 2

N(mn −mp)5

15(2π)3
(1 + 3ρ2).

The Fermi constant extracted from the neutron lifetime
satisfy

GN

√
(1 + 3ρ2) =

√
15(2π)3Γµexp

(M −m)5
= 2,77× 10−5 GeV−2.

A universal coupling (GN = GF = 1,16× 10−5 GeV−2),
requires the axial to vector coupling ratio

ρ =
gA

gV
= 1,25

for the nucleon weak current.



Effective theory for leptons at low energies (E ≤ GeV )

Gauge theory of e.m. interactions + effective theory for weak
interaction ( ψL/R ≡ 1

2 (1∓ γ5)ψ ≡ γL/Rψ)

L = ē[iγα(∂α − ieAα)−me ]e + ν̄[iγα∂α −mν ]ν − 1

4
FαβFαβ

+
g√
2

(ēγανL)V−α + h.c − 1

4
V αβVαβ + M2

VV αVα + e → µ,

Weak interaction is chiral, involves only the left components

ēγαγLν = ē(γR + γL)γαγLν = ēγRγ
αγLν = ēLγ

ανL

In terms of the chiral fields, taking mν = 0,

L = ēLiγ
α∂αeL + ēR iγ

α∂αeR + ν̄Liγ
α∂ανL + ν̄R iγ

α∂ανR

− ie(ēLγ
αeL + ēRγ

αeR)Aα −me(ēReL + ēLeR)− 1

4
FαβFαβ

+
g√
2

(ēLγ
ανL)V−α + h.c .− 1

4
V αβVαβ + M2

VV αVα + e → µ,



Right components of the fields do not feel weak interaction.

Both (right and left) components of leptons feel e.m.
interaction with the same strength.

A gauge theory of weak interactions must involve only
transformations of the left fields.

Fermion mass terms would not be invariant.

Vector bosons - ( 1
2 ,

1
2 ) irrep of the HLG- are not chiral.

If we pretend the IVB to be a gauge field, the mass term will
be forbidden by gauge invariance.



Weak interactions of leptons: G-W-S Model

The free particle Lagrangian reads

L = ēLiγ
α∂αeL + ēR iγ

α∂αeR + ν̄Liγ
α∂ανL + ν̄R iγ

α∂ανR

=
(
ν̄L, ēL

)
iγα∂α

(
νL

eL

)
+ ēR iγ

α∂αeR + ν̄R iγ
α∂ανR

≡ L̄iγµ∂µL + ēR iγ
α∂αeR + ν̄R iγ

α∂ανR

Natural choice SU(2): Left fields as SU(2) doublets, right
fields as singlets.

L ≡
(
νL

eL

)
; R ≡ eR , νR

It doesn’t work (Glashow (1961)).
Next minimal choice SU(2)⊗U(1). Group generators: {τ2 ,

Y
2 }

satisfy

[
τi

2
,
τj

2
] = iεijk

τk

2
, [

τi

2
,
Y

2
] = 0.



Gauging the SU(2)L ⊗ U(1)Y : covariant derivatives

DµL =

(
∂µ − ig

σi

2
W i

µ − ig ′
Y

2
Bµ

)
L,

DµRi =

(
∂µ − ig ′

Y

2
Bµ

)
Ri .

Notice: eL is not a singlet under U(1)Y , i.e. U(1)Y 6= U(1)R .

Lagrangian

L =L̄iγµDµL +
2∑

i=1

R̄i iγ
µDµRi −

1

4
W a

µν W
aµν − 1

4
BµνB

µν

Left field terms

L̄iγµDµL =
(
ν̄L, ēL

)
iγµ

∂µ − i g
2W

3
µ − ig ′

YνL
2 Bµ,−i g√

2
W+

µ

−i g√
2
W−

µ , ∂µ + i g
2W

3
µ − ig ′

YeL
2 Bµ

(νL

eL

)
where W±

µ = 1√
2

(W 1
µ ∓ iW 2

µ ).



L̄iγµDµL =
(
ν̄L, ēL

)
iγµ

 (∂µ − i g
2W

3
µ − ig ′

YνL
2 Bµ)νL − i g√

2
W+
µ eL

−i g√
2
W−
µ νL + (∂µ + i g

2W
3
µ − ig ′

YeL
2 Bµ)eL


= ν̄Liγ

µ∂µνL + ēLiγ
µ∂µeL+ν̄Lγ

µ(
g

2
W 3
µ + g ′

YνL

2
Bµ)νL

+
g√
2
ν̄Lγ

µW+
µ eL +

g√
2
ēLγ

µW−
µ νL−ēLγ

µ(
g

2
W 3
µ − g ′

YeL

2
Bµ)eL

2∑
i=1

R̄i iγ
µDµRi = ν̄R iγ

µ

(
∂µ − ig ′

YνR

2
Bµ

)
νR + ēR iγ

µ

(
∂µ − ig ′

YeR

2
Bµ

)
eR

= ν̄R iγ
µ∂µνR + ēR iγ

µ∂µeR +
g ′

2
ν̄Rγ

µYνR
BµνR +

g ′

2
ēRγ

µYeR
BµeR

Recovering QED: Define

W 3
µ = cos θZµ + sin θAµ

Bµ = − sin θZµ + cos θAµ



−ēLγ
µ(

g

2
W 3
µ − g ′

YeL

2
Bµ)eL +

g ′

2
ēRγ

µYeR
BµeR

=− ēLγ
µ(

g

2
sin θ − g ′

YeL

2
cos θ)AµeL +

g ′

2
ēRγ

µYeR
cos θAµeR

− ēLγ
µ(

g

2
cos θ + g ′

YeL

2
sin θ)ZµeL −

g ′

2
ēRγ

µYeR
sin θZµeR

Similarly for the neutrino terms

ν̄Lγ
µ(

g

2
W 3
µ + g ′

YνL

2
Bµ)νL +

g ′

2
ν̄Rγ

µYνR
BµνR

=ν̄Lγ
µ(

g

2
sin θ + g ′

YνL

2
cos θ)AµνL +

g ′

2
ν̄Rγ

µYνR
cos θAµνR

+ ν̄Lγ
µ(

g

2
cos θ − g ′

YνL

2
sin θ)ZµνL −

g ′

2
ν̄Rγ

µYνR
sin θZµνR



The measured electric charges of the electron and neutrino require

g

2
sin θ − g ′

YeL

2
cos θ = e, −g ′

2
YeR

cos θ = e

g

2
sin θ + g ′

YνL

2
cos θ = 0,

g ′

2
YνR

cos θ = 0

The last equation impose YνR
= 0. The remaining Eqs. yield

e =
g

2

YeR

YνL

sin θ = −g ′

2
YeR

cos θ, YeR
= YeL

+ YνL
.

It is conventional to assign YL = −1⇒ YeR
= −2, such that

the Nishijima-Gell-Mann relation holds for all particles

Q = T 3 +
Y

2
.

In this case
e = g sin θ = g ′ cos θ,

Notice that νR is a singlet of SU(2)L ⊗ U(1)Y .



Weinberg-Salam Model content so far

1 Massless QED

LQED = ēiγα(∂α + ieQAα)e + ν̄iγα(∂α + ieQAα)ν − 1

4
FαβFαβ

2 IVB correct interactions

LIVB =
g√
2

(ēLγ
µW−

µ νL + ν̄Lγ
µW+

µ eL)

3 New interactions with neutral bosons: neutral currents

LNC = −ēLγ
µ(

g

2
cos θ − g ′

2
sin θ)ZµeL + g ′ sin θēRγ

µZµeR

+ ν̄Lγ
µ(

g

2
cos θ +

g ′

2
sin θ)ZµνL

4 Gauge bosons kinetic terms and (self-) interactions

LGB = −1

4
W a

µν W
aµν − 1

4
BµνB

µν



Problems: massless fermions and massless gauge bosons (W±,Z 0)

1 Fermion mass: forbidden by chiral symmetry (chiral structure
of weak interactions).

2 Gauge boson mass: forbidden by gauge symmetry.

Glashow (1961): SU(2)⊗ U(1) with explicit symmetry
breaking by mass terms. Partial symmetry.

Weinberg (1967), Salam (1967): SU(2)L ⊗ (1)Y with
spontaneous symmetry breaking a la Higgs, following
Nambu-Goldstone.



Spontaneous Symmetry Breaking: Nambu

Let us consider a real scalar free theory

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2

We have been considering m2 > 0 so far. Mandatory since
E =

√
p2 + m2 > 0 for the particles.

A QFT with m2 < 0 is not tenable for free particles.

The vacuum expectation value of this field vanishes

〈0|φ|0〉 =

∫
d3p

(2π)32Ep
[〈0|ap|0〉e−ip.x + 〈0|a†p|0〉e ip.x ] = 0.

Let us consider now an interacting real scalar field theory
whose interactions are described by a potential V (φ)

L =
1

2
∂µφ∂

µφ− V (φ).



Expanding the potential around a minimum φ0

V (φ) = V (φ0) + V ′(φ0)(φ− φ0) +
1

2
V ′′(φ0)(φ− φ0)2 + ....

For the interacting theory the Lagrangian can be written as

L =
1

2
∂µ(φ− φ0)∂µ(φ− φ0)− 1

2
V ′′(φ0)(φ− φ0)2 + ....

Conventional interactions have a minimum at φ0 = 0. In this
case the mass of the particle is m2 = V ′′(0).
But the expansion (and the particle content) actually depend
on the nature of the potential. Consider e.g.

V (φ) =
1

2
m2φ2 +

λ

4!
φ4, λ > 0

The extremals are located at

V ′(φ0) = φ0(m2 +
λ

6
φ2

0) = 0

If m2 > 0 the only solution is φ0 = 0. In this case
V ′′(φ0) = m2 > 0 and φ0 = 0 is indeed a minimum.



But if m2 < 0 we have another solutions at φ0 = ±
√
−6m2/λ

with V ′′(φ0) = (m2 − 3m2) = −2m2 > 0, i.e. it is indeed a
minimum. For φ0 = 0, V ′′(φ0) = m2 < 0,i.e. we have a
maximum. QFT expansion must be done around φ0.

m2>0

m2<0

ϕ

V
(ϕ
)=
m
2 2
ϕ
2
+
λ 4
!ϕ
4



Rewriting the Lagrangian in terms of ξ = φ− φ0 we get

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4

=
1

2
∂µξ∂

µξ − 1

2
(−2m2)ξ2 − 1

6
λφ0ξ

3 − λ

4!
ξ4−V (φ0)

Notice that L(φ) is symmetric under φ→ −φ.

Expansion around 〈0|φ|0〉 = 0 makes no sense, particles would
have E =

√
p2 + m2, imaginary for p2 < −m2,. The

Hamiltonian is not Hermitian.

We must choose a minimum of the potential to quantize the

theory. We have two possibilities: φ0 = ±
√
−6m2

λ . The

φ→ −φ symmetry is broken with this choice (SSB).

The particles have a mass −2m2 and cubic interactions. The
symmetry of the Lagrangian does not show up in the
spectrum, it is hidden.



Spontaneous breaking of a continuous global symmetry

Let us consider now a continuous symmetry. Take two real
scalar fields φ = (φ1, φ2) with a similar potential

L =
1

2
∂µφ · ∂µφ−

m2

2
φ2 +

λ

4!
φ4.

For m2 < 0 now the minimum of the potential satisfy

φ2
10 + φ2

20 =
−6m2

λ
⇒ |φ0| =

√
−6m2

λ
≡ v .

We have a continuously degenerated vacuum. Must choose
one of them to quantize the theory.



The Lagrangian and the vacuum have a SO(2) symmetry.
Choosing a particular vacuum breaks this symmetry. Take
φ0 = (0, v) and define ξ = φ2 − v

L =
1

2
∂µφ1∂

µφ1 +
1

2
∂µξ∂

µξ−1

2
(m2 +

λv2

6
)φ2

1−
1

2
(m2 +

λv2

2
)ξ2 + ...

=
1

2
∂µφ1∂

µφ1 +
1

2
∂µξ∂

µξ − 1

2
(−2m2)ξ2 + ...

One of the fields turns out to be massive with a mass
−2m2.The other field is massless.
Considering N real fields with the analogous potential yields a
SO(N) symmetric Lagrangian.

The minimal is given also by |φ0| =
√
−6m2

λ . The vacuum is

SO(N) symmetric.
Choosing φ0 = (0, 0, .., 0, v) breaks this symmetry down to
SO(N − 1).
We get N − 1 massless fields (Goldstone bosons) and a
massive field with mass −2m2.



Goldstone Theorem

Consider a general QFT with interacting scalar fields φ.
Assume a potential V (φ) with a symmetry group G whose
generators are La, a = 1, 2, ..,N.

The vacuum configurations are obtained from δV
δφ

∣∣∣
φ0=v

= 0.

There will be M < N generators leaving the vacuum invariant

La
ij vj = 0, a = 1, 2, ...,M

These generators span a subgroup H ⊂ G . The remaining
N −M generators satisfy La

ij vj 6= 0.
Under an infinitesimal group transformation:

δφi = −iθaLa
ij φj

the potential is invariant thus

−i δV
δφi

θaLa
ij φj = 0.



Taking a second variation we get

δ2V

δφiδφk
La

ij φj +
δV

δφi
La

ik = 0.

For the vacuum configuration the last term vanishes

δ2V

δφiδφk
La

ij φj

∣∣∣∣
φ0=v

= 0.

Expanding the potential around the vacuum φ0

V (φ) = V (φ0) +
1

2
(M2)ij (φi − vi )(φj − vj ) + . . .

thus
(M2)ik L

a
ij vj = 0, a = 1, 2, ....

For a = 1, ...M we have La
ij vj = 0 and this condition is

satisfied.
For a = M + 1, ...,N we know that La

ij vj 6= 0. The matrix M2
ij

must have N −M vanishing eigenvalues.
There are N −M massless modes: Nambu-Goldstone.



Spontaneous Breaking of Gauge Symmetries: Higgs

Let us consider escalar QED

L = Dµφ
∗Dµφ−m2φ∗φ− λ(φ∗φ)2 − 1

4
Fµν F

µν

The Lagrangian is invariant under U(1) local transformations

φ→ e−iθ(x)φ, Aµ → Aµ −
1

e
∂µθ(x).

If m2 < 0, the minimum is given by |φ0| =
√
−m2

2λ ≡
v√
2

.

Convenient to write the field as φ(x) = ρ(x)e−iξ(x). A gauge
transformation allows us to do this. The minimum are given
by φ0(x) = v√

2
e−iξ(x).

Redefine the field: use

φ =
e iξ/v

√
2

(σ + v)



Then perform a gauge transformation

φ→ φ′ = e−iξ/vφ =
1√
2

(σ+v), Aµ → A′µ = Aµ−
1

ev
∂µξ,

to obtain the following Lagrangian

L = − 1

4
F ′µνF

′µν +
1

2
∂µσ∂

µσ +
1

2
e2v2A′µA

′µ

+
1

2
e2A′µA

′µσ(2v + σ)− 1

2
σ2(3λv2 + m2)

− λvσ3 − 1

4
λσ4

The gauge field acquires a mass m2
A = e2v2/2.

The ξ field ”disappears”from the spectrum. This d.o.f
reappears as the longitudinal mode of the gauge field.



SSB of non-Abelian gauge symmetries: SU(2)I

Consider now a complex scalar doublet Φ =

(
φ1

φ2

)
of SU(2)I .

L = (DµΦ)†DµΦ−m2Φ†Φ− λ(Φ†Φ)2 − 1

4
W a

µν W
aµν

with DµΦ = (1∂µ + igT aW a
µ )Φ, is invariant under

Φ→ Φ′ ≡ UΦ = e−iT aθa
Φ, Wµ →W ′

µ = UWµU
−1+

i

g
(∂µU)U−1.

If m2 < 0, the minimum of the potential satisfies |Φ0| = v

with v =
√
−m2

2λ . Parametrize the doublet as

Φ = e
i
v
ξ·T
(

0
S

)
≡ e

i
v
ξ·T Φ̃.

where {ξ1, ξ2, ξ3,S} are real fields.
Choose the vacuum such that only S acquires v.e.v. and shift
S = (σ + v).



Now perform a gauge transformation with U = e−
i
v
ξ·T . The

resulting Lagrangian is

L = (D ′µΦ̃)†D ′µΦ̃−m2Φ̃†Φ̃− λ(Φ̃†Φ̃)2 − 1

4
W ′a

µν W
′aµν

with D ′µΦ̃ = (∂µ + igW ′µ)Φ̃.

The mass terms for the gauge bosons are

LGBM = (igW ′µΦ̃0)†igW ′µΦ̃0

where Φ̃0 =

(
0

v/
√

2

)
. A straightforward calculation yields

LGBM =
g2v2

2
(W 1

µW
1µ + W 2

µW
2µ + W 3

µW
3µ).

Similarly, the scalar field σ has a mass mσ = −2m2.



Sumarizing SSB of SU(2) gauge symmetry:

1 We started with 3 massless gauge fields and a complex
doublet containing four real scalar fields.

2 The gauge symmetry is SU(2), there are three generators T a.

3 The choice of the vacuum completely breaks down this
symmetry T aΦ̃0 6= 0. There are three Nambu-Goldstone
bosons: ξ1, ξ2, ξ3, and three massless gauge fields. The particle
content is not obvious.

4 A gauge transformation clearly shows the particle content.
The NGB convert into the longitudinal modes of the three
gauge fields which this way become massive.



Weinberg-Salam: SSB of SU(2)L ⊗ U(1)Y

We add the complex scalar doublet to the previous Lagrangian

L =L̄iγµDµL +
2∑

i=1

R̄i iγ
µDµRi −

1

4
W a

µν W
aµν − 1

4
BµνB

µν

+ (DµΦ)†DµΦ−m2Φ†Φ− λ(Φ†Φ)2,

with m2 < 0 and the SU(2)L ⊗ U(1)Y covariant derivatives

DµΦ =

(
∂µ − ig

σi

2
W i

µ − ig ′
Y

2
Bµ

)
Φ,

We parametrize the complex scalar doublet as

Φ = exp(− i

2v
ξ · σ)Φ̃, Φ̃ =

(
0

1√
2

(v + H)

)
.

Now perform a gauge transformation with U = e−
i

2v
ξ·σ,

eliminating the ξa fields from the Lagrangian.



The resulting Lagrangian is

L =L̄iγµD ′µL +
2∑

i=1

R̄i iγ
µD ′µRi −

1

4
W ′a

µν W
′aµν − 1

4
B ′µνB

′µν

+ (DµΦ̃)†DµΦ̃−m2Φ̃†Φ̃− λ(Φ̃†Φ̃)2.

where

D ′µL =

(
∂µ − ig

σa

2
W ′a

µ − ig ′
Y

2
B ′µ

)
L,

D ′µRi =

(
∂µ − ig ′

Y

2
B ′µ

)
Ri

D ′µΦ̃ =

(
∂µ − ig

σa

2
W ′a

µ − ig ′
Y

2
B ′µ

)
Φ̃.

The |D ′µΦ̃|2 term reads (we skip the ′ label for gauge bosons) :∣∣∣∣∣
(
∂µ − i

2 (gW 3
µ + g ′YBµ) − i√

2
gW+

µ

− i√
2
gW−

µ ∂µ − i
2 (−gW 3

µ + g ′YBµ)

)(
0

v+H√
2

)∣∣∣∣∣
2



A straightforward calculation yields

|DµΦ̃|2 =
g2

4
W+
µ W−µ(v + H)2 +

1

2
|∂µH − i

2
(−gW 3

µ + g ′YHBµ)(v + H)|2

=
1

2
∂µH∂µH +

v2

8
(gW 3

µ − g ′YHBµ)2 +
v2g2

4
W+
µ W−µ + . . .

From the previously considered mixing we get

gW 3
µ − g ′YHBµ = (g cos θ + g ′YH sin θ)Zµ + (g sin θ − g ′YH cos θ)Aµ

= (g cos θ + g ′YH sin θ)Zµ − g ′ cos θ(YH − 1)Aµ,

where we used g sin θ = g ′ cos θ in the last row.
If we choose YH = 1, the photon remain massless. It can be easily
shown that

cos θ =
g√

g2 + g ′2
, sin θ =

g ′√
g2 + g ′2

,

g cos θ + g ′ sin θ =
√

g2 + g ′2 =
g

cos θ
.



Finally

|DµΦ̃|2 =
1

2
∂µH∂µH +

g2v2

8 cos2 θ
ZµZµ +

v2g2

4
W+
µ W−µ + . . .

and the masses of the gauge bosons are given by

m2
W =

g2v2

4
, m2

Z =
m2

W

cos2 θ
.

The massless mode is

Aµ =
g ′Bµ + gW 3

µ√
g2 + g ′2

The Fermi coupling, already fixed from muon decay is

GF√
2

=
g2

8m2
W

=
1

2v2
⇒ v =

√
1√
2GF

= 246 GeV



Fermion masses

The problem of the gauge boson masses solved by the
spontaneous breaking of gauge symmetries.

We can trace the origin of the mass term to the interactions
of the Higgs doublet with gauges bosons introduced by the
covariant derivatives.

Still remain the problem of fermion masses. Forbidden by
chiral symmetry.

So far, we have no interactions of the Higgs doublet with
fermions.

The only constraint for these interactions is SU(2)L ⊗ U(1)Y

gauge symmetry and renormalizability.

The lowest dimension product of L and Φ invariant under
SU(2)L is L̄Φ (and its h.c. Φ†L).



Since eR is an SU(2)L singlet, the interaction

Vint = ge L̄ΦeR + h.c . = ge(ν̄Lφ
+eR + ēLφ

0eR) + h.c .

is SU(2)L invariant.

The U(1)Y quantum numbers are additive and Yf̄ = −Yf .
This term is also U(1)Y invariant.

After SSB this term yields

Vint = ge(L̄Φ̃eR + ēRΦ̃†L) =
ge√

2
(ēLeR + ēReL)(v + H)

After SSB the fermion acquire a mass me = ge v√
2

.



Dirac Neutrino masses

Right neutrinos have YνR
= 0 and are also SU(2)L singlets.

Not required at all by the gauge symmetry.
We know that for SU(2), the 2̄ irrep is equivalent to the 2.
The field Φ̂ = iσ2Φ∗ transforms like Φ.
Involves the conjugated scalar fields, has the opposite U(1)Y

quantum numbers
The lowest dimension gauge invariant interaction is

Vint = gν L̄Φ̂νR + h.c .

After SSB this term yields

Vint = gν(L̄Φ̃νR + ν̄RΦ̃†L) =
gν√

2
(ν̄LνR + ν̄RνL)(v + H)

After SSB the neutrino acquires a Dirac mass mν = gνv√
2

.

Measured masses mν < 1eV .
Right neutrino is a gauge singlet. Majorana masses ν̄RνR are
possible.



Summary: SU(2)L ⊗ U(1)Y → U(1)em .

The complete one-generation leptons GWS Lagrangian is

L =L̄iγµDµL + ēR iγ
µDµeR + ν̄R iγ

µDµνR −
1

4
W a

µν W
aµν − 1

4
BµνB

µν

+(DµΦ̃)†DµΦ̃−m2Φ̃†Φ̃− λ(Φ̃†Φ̃)2 − (ge L̄Φ̃eR + gν L̄Φ̂νR + h.c.)

where

DµL =

(
∂µ − ig

σa

2
W a

µ − ig ′
Y

2
Bµ

)
L, DµRi =

(
∂µ − ig ′

Y

2
Bµ

)
Ri

DµΦ̃ =

(
∂µ − ig

σa

2
W a

µ − ig ′
Y

2
Bµ

)
Φ̃, Φ̃ =

(
0

v+H√
2

)
, Φ̂ = iσ2Φ̃∗.

Neutrinos discovered in 1956 ( Cowan-Reines). There are two
types neutrinos : νe and νµ (Lederman-Schwartz-Steinberger
Brookhaven 1962).
τ lepton discovered in 1975 (Perl et.al. SLAC) and there is an
associated neutrino, ντ (DONUT Coll. FERMILAB, 2000).



These lepton have same electroweak interactions. There is a
replication of families with exactly the same terms(

νe

e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

.

GWS predictions: i) Neutral currents; ii) Gauge bosons
self-interactions, iii) Higgs. Weak coupling related to the e.m.
coupling through the weak mixing angle θ.

Except for v = 246 GeV no new information at the time, but
plethora of new physics for experimentalists.

Unknown parameters: sin θ, λ. The Yukawa couplings are
given by the fermion masses, e.g. ge =

√
2me/v .



Neutral Currents

New neutral currents due to the exchange of the Z 0 boson

LNC = [g e
L ēLγ

µeL + g e
R ēRγ

µeR + gνL ν̄eLγ
µνeL]Zµ + µ + τ

= [ēγµ(g e
V − g e

Aγ
5)e + ν̄γµ(gνV − gνAγ

5)ν]Zµ + µ + τ

with

g f
L =

g

cos θ

[
T f

3 − Qf sin2 θ
]
, g f

R =
g

cos θ
Qf sin

2θ,

g f
V =

g

2 cos θ
T f

3 , g f
A =

g

2 cos θ

[
T f

3 − 2Qf sin2 θ
]

NC discovered at LEP in 1973 in the νµe
− → νµe

− process:
sin2θ ≈ 0,2.

With this value:

MW =

√
παem√

2GF sin2 θ
≈ 80GeV , ⇒ MZ ≈ 90GeV .



The W+ boson was discovered at LEP in 1983 with a mass
MW = 80GeV .

The Z 0 boson was discovered at LEP in 1983 with a mas
MZ = 91GeV .

The Higgs boson mass is: M2
H = −2m2 = 2λv2. Free

parameter, there are no direct predictions for this observable.

However, perturbative coupling requires λ << 1. A light
Higgs boson is expected.

It enters many observables and gradually the mass was
bounded from electroweak precision measurements.

Finally it was discovered at CERN in 2012 with a mass
MH = 125GeV .

With this value λ =
M2

H
2v2 = 0,125.



Weak interactions of hadrons: beyond beta decay.

Problem: Eightfold Way currents yield inconsistent predictions
for K+ → µ+νµ and π+ → µ+νµ decays

τK + = 1,2× 10−8seg ⇒ Γ(K+) = 5,3× 10−14MeV ,

τπ+ = 2,6× 10−8seg ⇒ Γ(π+) = 2,5× 10−14MeV ,

BR(K+ → µ+νµ) =0,63 ⇒ Γ(K+ → µ+νµ) = 3,3× 10−14MeV

BR(π+ → µ+νµ) =0,99 ⇒ Γ(π+ → µ+νµ) = 2,5× 10−14MeV

The ratio of these decay widths is

Γ(K+ → µ+νµ)

Γ(π+ → µ+νµ)
|exp = 1,3.

Current-current interaction for K+(Q)→ µ+(p1)νµ(p2) yields

−iMK = 〈K+|Jµ|0〉ū(p2)γµ(1− γ5)v(p1) = gKQµū(p2)γµ(1− γ5)v(p1)

|MK |2 = 4g2
Km

2
µ(M2

K −m2
µ), ⇒ ΓK =

g2
Km

2
µ

4π

(M2
K −m2

µ)2

M3
K



Analogous results for the pion decay. The ratio

Γ(K+ → µ+νµ)

Γ(π+ → µ+νµ)
=

g2
Km

3
π(M2

K −m2
µ)2

g2
πM

3
K (m2

π −m2
µ)2
≈

g2
K

g2
π

× 17,6.

SU(3) symmetry yields gK ≈ gπ and we obtain a huge ratio
compared to the experimental result.

Nicola Cabibbo (1963): Consistent results are obtained for
weak decays of hadrons if we assume i) Eightfold way
(conserved vector currents) + axial currents ; ii) V-A
structure for leptons ; iii) rotated currents

Jµ = cosθc (V∆S=0
µ − A∆S=0

µ ) + sin θc (V∆S=1
µ − A∆S=1

µ )

This amounts to gK → gs sin θc , gπ → gs cos θc in the
previous calculation. The measured ratio yields

Γ(K+ → µ+νµ)

Γ(π+ → µ+νµ)
= tan2 θc

m3
π(M2

K −m2
µ)

M3
K (m2

π −m2
µ)

= 1,32⇒ sin θc ≈ 0,20



Weak interactions of quarks

Many other observables involving weak decays of hadrons
consistent with this hypothesis. Weak interactions do not
respect SU(3) symmetry.
Today we understand weak interactions of hadrons in terms of
weak interactions of quarks.
After deep inelastic scattering experiments (early 70’s) the
existence of quarks was firmly stablished, hadrons composed
of u, d , s were known.
The quark doublet of the weak interaction is

qL =

(
u′

d ′

)
L

Right fields u′R , d
′
R , s
′
R are SU(2)L singlets.

We use the dash to remark that these are quark states with
well defined transformation properties under SU(2)L ⊗ U(1)Y .
Do not necessarily coincide with the pure states 3, 3̄ of SU(3).



In the next slides we skip the dash to simplify notation. Will
come back to this point when we discuss mass terms.

The U(1)Y quantum numbers can be obtained from the
Gell-Mann-Nishijima relation Q = T3 + Y

2

Y (uL) =
1

3
, Y (uR) =

4

3
, Y (dL) =

1

3
, Y (dR) = −2

3
.

The additional terms in the GWS Lagrangian are

L =q̄Liγ
µDµqL + ūR iγ

µDµuR + d̄R iγ
µDµdR

− (guq̄LΦ̂uR + gd q̄LΦ̃dR + h.c .)

where

DµqL =

(
∂µ − ig

σa

2
W a

µ − ig ′
Y

2
Bµ

)
qL, DµqRi =

(
∂µ − ig ′

Y

2
Bµ

)
qRi

Φ̃ =

(
0

v+H√
2

)
, Φ̂ = iσ2Φ̃∗ =

( v+H√
2

0

)
.



Left field terms

L̄iγµDµL =
(
ūL, d̄L

)
iγµ

(
∂µ − i g

2W
3
µ − ig ′

YuL

2 Bµ,−i g√
2
W+

µ

−i g√
2
W−µ , ∂µ + i g

2W
3
µ − ig ′

YdL

2 Bµ

)(
uL

dL

)

=
(
ūL, d̄L

)
iγµ

(
(∂µ − i g

2W
3
µ − ig ′

YuL

2 Bµ)uL − i g√
2
W+

µ dL

−i g√
2
W−µ uL + (∂µ + i g

2W
3
µ − ig ′

YdL

2 Bµ)dL

)

= ūLiγ
µ∂µuL + d̄Liγ

µ∂µdL+ūLγ
µ(

g

2
W 3

µ + g ′
YuL

2
Bµ)uL

+
g√
2
ūLγ

µW+
µ dL +

g√
2
d̄Lγ

µW−µ uL−d̄Lγ
µ(

g

2
W 3

µ − g ′
YdL

2
Bµ)dL

For the right fields we get

ūR iγ
µ

(
∂µ − ig ′

YuR

2
Bµ

)
uR + d̄R iγ

µ

(
∂µ − ig ′

YdR

2
Bµ

)
dR =

= ūR iγ
µ∂µuR + d̄R iγ

µ∂µdR +
g ′

2
ūRγ

µYuR
BµuR +

g ′

2
d̄Rγ

µYdR
BµdR



Recovering QED: Recall

W 3
µ = cos θZµ + sin θAµ

Bµ = − sin θZµ + cos θAµ

ūLγ
µ(

g

2
W 3
µ + g ′

YuL

2
Bµ)uL +

g ′

2
ūRγ

µYuR
BµuR =

=ūLγ
µ(

g

2
sin θ + g ′

YuL

2
cos θ)AµuL +

g ′

2
ūRγ

µYuR
cos θAµuR

+ ūLγ
µ(

g

2
cos θ − g ′

YuL

2
sin θ)ZµuL −

g ′

2
ūRγ

µYuR
sin θZµuR

Similarly for the d terms

−d̄Lγ
µ(

g

2
W 3
µ − g ′

YdL

2
Bµ)dL +

g ′

2
d̄Rγ

µYdR
BµdR =

=− d̄Lγ
µ(

g

2
sin θ − g ′

YdL

2
cos θ)AµdL +

g ′

2
d̄Rγ

µYdR
cos θAµdR

− d̄Lγ
µ(

g

2
cos θ + g ′

YdL

2
sin θ)ZµdL −

g ′

2
d̄Rγ

µYdR
sin θZµdR



The electric charges of the u, d quarks require

g

2
sin θ + g ′

YuL

2
cos θ = e qu,

g ′

2
YuR

cos θ = e qu

−g

2
sin θ + g ′

YdL

2
cos θ = e qd ,

g ′

2
YdR

cos θ = e qd

These equations can be summarized as

eQf = g sin θT 3
fχ + g ′ cos θ

Yfχ

2

where f = u, d , and χ = L,R.

These equations yield

e = g sin θ = g ′ cos θ,



Neutral Currents

New neutral currents due to the exchange of the Z 0 boson

LNC = [gu
L (ūL, d̄L)γµGZ

fL

(
uL

dL

)
+ (ūR , d̄R)γµGZ

fR

(
uR

dR

)
]Zµ

= [ūγµ(gu
V − gu

Aγ
5)u + d̄γµ(gd

V − gd
Aγ

5)d ]Zµ

with

GZ
fχ =

g

cos θ
T 3

fχ − e tan θQf ,

g f
V =

g

2 cos θ
T f

3 , g f
A =

g

2 cos θ
T f

3 − e tan θQf

u
Z 0
µ

u
= −iγµ(gu

V − gu
Aγ

5)
d

Z 0
µ

d

= −iγµ(gd
V − gd

Aγ
5)



Charged Currents and hadron weak decays

g√
2
ūLγ

µW+
µ dL +

g√
2
d̄Lγ

µW−
µ uL

Neutron beta decay:n→ p e− νe

d
du

W− e−

ν̄e

u
du

Meson decay:
K +→µ+ νµ
π+→µ+ νµ

,

u

s̄

K +
W+

µ+

ν̄µ

Not enough, Cabibbo factor missing: d → d ′ = cos θd + sin θs.

d
W−
µ

u

= −i g√
2

cos θcγµγL
s

W−
µ

u

= −i g√
2

sin θcγµγL

Phenomenology requires θc : what is its origin?



Cabibbo angle and Charm quark

Some reactions induced by weak interactions were not
observed e.g. K 0 → µ+µ−

d
cos θc

u

s̄
sin θc

K 0

W−
µ

W+
µ

µ−

νµ

µ+

M≈ G 2
F sin θc cos θc

One loop calculation beyond these lectures, but upper bounds
(at the time) on the decay width much smaller than predicted.
Glashow-Illiopoulos-Maiani (1970): this and other suppressed
processes can be understood if a new ”down-type”quark
exists: Charm quark ”c”.
Two generations of quarks for weak interactions.

q′1L =

(
u′

d ′

)
L

, q′2L

(
c ′

s ′

)
L



Weak eigenstates vs mass eigenstates: Cabibbo angle.

The most general dimension 4, SU(2)L ⊗ U(1)Y invariant
Yukawa Lagrangian is:

VYuk = y11q̄′1LΦcu′R + y12q̄′1LΦcc ′R + y21q̄′2LΦcu′R + y22q̄′2LΦcc ′R

+ g11q̄′1LΦd ′R + g12q̄′1LΦs ′R + g21q̄′2LΦd ′R + g22q̄′2LΦs ′R + h.c ..

After spontaneous symmetry breaking

VYuk =
v√
2

[y11ū′Lu
′
R + y12ū′Lc

′
R + y21c̄ ′Lu

′
R + y22

¯c ′2Lc
′
R

+ g11d̄ ′Ld
′
R + g12d̄ ′Ls

′
R + g21s̄ ′Ld

′
R + g22s̄ ′Ls

′
R ] + H − interactions

=
v√
2

[(
ū′L, c̄

′
L

)(y11, y12

y21, y22

)(
u′R
c ′R

)
+
(
d̄ ′L, s̄

′
L

)(g11, g12

g21, g22

)(
d ′R
s ′R

)]
+ ...

≡ Ū ′LM
UU ′R + D̄ ′LM

DD ′R .

The mass matrices MU ,MD are not diagonal. Weak
eigenstates are not mass eigenstates.



Calculation of physical processes requires to use mass
eigenstates.

Every square matrix can be diagonalized by two unitary
matrices

ALM
UA†R = MU

diag , BLM
DB†R = MD

diag

with MU
diag = Diag [mu,mc ]; MD

diag = Diag [md ,ms ] and
AR/L,BR/L are unitary matrices.

Then

VYuk = Ū ′LA
†
LALM

UA†RARU
′
R + D̄ ′LB

†
LBLM

DB†RBRD
′
R

= ŪLM
U
diagUR + D̄LM

D
diagDR

= muūLuR + mc c̄LcR + md d̄LdR + ms s̄LsR ,

where

UL = ALU
′
L, UR = ARU

′
R , DL = BLU

′
L, DR = BRU

′
R



Notice that the free field terms are invariant under these
transformations

ū′Liγ
µ∂µu

′
L + c̄ ′Liγ

µ∂µc
′
L + d̄ ′Liγ

µ∂µd
′
L + s̄ ′Liγ

µ∂µs
′
L

+ū′R iγ
µ∂µu

′
R + c̄ ′R iγ

µ∂µc
′
R + d̄ ′R iγ

µ∂µd
′
R + s̄ ′R iγ

µ∂µs
′
R

=Ū ′Liγ
µ∂µU

′
L + D̄ ′Liγ

µ∂µD
′
L + Ū ′R iγ

µ∂µU
′
R + D̄ ′R iγ

µ∂µD
′
R

=ŪLALiγ
µ∂µA

†
LUL + D̄LBLiγ

µ∂µB
†
LDL

+ ŪRAR iγ
µ∂µA

†
RUR + D̄RBR iγ

µ∂µB
†
RDR

=ŪLiγ
µ∂µUL + D̄Liγ

µ∂µDL + ŪR iγ
µ∂µUR + D̄R iγ

µ∂µDR .

Similarly, for the electromagnetic interactions

[
2

3
(ū′Lγ

µu′L + c̄ ′Lγ
µc ′L)− 1

3
(d̄ ′Lγ

µd ′L + s̄ ′Lγ
µs ′L)]Aµ + L→ R

=(
2

3
Ū ′Lγ

µU ′L −
1

3
D̄ ′Lγ

µD ′L)Aµ + L→ R

=(
2

3
ŪLALγ

µA†LUL −
1

3
D̄LBLγ

µB†LDL)Aµ + L→ R

=(
2

3
ŪLγ

µUL −
1

3
D̄Lγ

µDL)Aµ + L→ R



Notice that invariance holds because Aµ has the same
coupling to all type-u quarks and same coupling to all type-d
quarks.

The coupling of Z 0 to quarks also satisfy these requirements.
Neutral currents are also invariant.
For the charged currents

Lch =
g√
2

[
(ū′Lγ

µd ′L + c̄ ′Lγ
µs ′L)W+

µ + (d̄ ′Lγ
µu′L + s̄ ′Lγ

µc ′L)W−µ
]

=
g√
2

[
Ū ′Lγ

µD ′LW
+
µ + D̄ ′Lγ

µU ′LW
−
µ

]
=

g√
2

[
ŪLALγ

µB†LDLW
+
µ + D̄LBLγ

µA†LUW
−
µ

]
=

g√
2

[
ŪLV γ

µDLW
+
µ + D̄LV

†γµUW−µ
]

=
g√
2

[
(ūL, c̄L)

(
Vud ,Vus

Vcd ,Vcs

)
γµ
(
dL

sL

)
W+

µ + h.c ,

]
=

g√
2

[
(Vud ūLγ

µdL + Vus ūLγ
µsL + Vcd c̄Lγ

µdL + Vcs c̄Lγ
µsL)W+

µ + h.c
]
.



The matrix V = ALB
†
L is a unitary matrix:

VV † = ALB
†
LBLA

†
L = ALA

†
L = 1.

Under quarks fields redefinition by a phase qi → e iφiqi , all
other terms in the Lagrangian are invariant but(

Vud ,Vus

Vcd ,Vcs

)
→
(
Vude

−i(φu−φd ),Vuse
−i(φu−φs )

Vcde
−i(φc−φd ),Vcse

−i(φc−φs )

)
Phases of the Vij elements can be removed by an appropriate
field redefinition leaving an orthogonal matrix

V =

(
cos θc , sin θc

− sin θc , cos θc

)
Cabibbo mixing is due to the dissalingnement between weak
eigenstates and mass eigenstates.



Cabibbo angle and Charm quark: GIM suppression

Consequences for K 0 → µ+µ−

d
cos θc

u

s̄
sin θc

K 0

W−
µ

W+
µ

µ−

νµ

µ+

Mu ≈ G 2
F sin θc cos θc

d
− sin θc

c

s̄
cos θc

K 0

W−
µ

W+
µ

µ−

νµ

µ+

Mc ≈ −G 2
F sin θc cos θc

We can understand the small decay width from strong
cancellations of these diagrams due to the Cabibbo matrix.

The c̄c(3096) meson discovered in 1974 by two independent
Collaborations.: SLAC (ψ) and BNL (J); today known as J/ψ.

Kobayashi-Maskawa (1973): CP violation observed in Kaon
decays requires a phase in the Cabibbo matrix.

The only possibility is that another generation of quarks exists.



Three generations: Cabibbo-Kobayashi-Maskawa matrix.

A new quark (b) discovered at FERMILAB in 1977 in the b̄b
system named Υ(9,41GeV ).

Its weak partner (t) was discovered at FERMILAB in 1995
with a mass mt = 175GeV .

There are three generations of quark weak eigenstates:

q′1L =

(
u′

d ′

)
L

, q′2L =

(
c ′

s ′

)
L

, q′3L =

(
t ′

b′

)
L

A similar analysis yields the unitary 3× 3 CKM matrix

Lch =
g√
2

[
ŪLV γ

µDLW
+
µ + D̄LV

†γµUW−µ
]

=
g√
2

(ūL, c̄L, t̄L)

Vud ,Vus ,Vub

Vcd ,Vcs ,Vcb

Vtd ,Vts ,Vtb

 γµ

dL

sL

bL

W+
µ + h.c ,





A 3× 3 unitary matrix has only 9 real free parameters. Recall

U = e iG with G † = G .

There are six phases in the quark field redefinitions:
Vij → e−i(φi−φj )Vij . Only five differences φi − φj are
independent.

We are left with 9− 5 = 4 free parameters: 3 rotation angles
and a phase.

Many alternative parametrizations. CKM original one is
V = R23IδR13I

†
δR12, with Rij rotation matrices and

Iδ = Diag(1, 1, e iδ). Explicitly

V =

 1, 0, 0
0, c23, s23

0,−s23, c23

c13, 0, s23e
−iδ

0, 1, 0
−s13e

iδ, 0, c23

 c23, s23, 0
−s23, c23, 0

0, 0, 1





Vud ,Vus ,Vub

Vcd ,Vcs ,Vcb

Vtd ,Vts ,Vtb

 =

 c12c13, s12c13, s13e
−iδ

−s13c23 − c12s23c13e
iδ, c12c23 − s12s23s13e

iδ, s23c13

s12s23 − c12c23s13e
iδ, −c12s23 − s12c23s13e

iδ, c23c13


All these parameters have been measured.

The phase δ induces CP violation: Neutral meson systems are
actually admixtures of states with well defined CP (QCD
eigenstates).

d
Vcd

c

s̄
V ∗cs

K 0

W−
µ

W+
µ

Vcs
s

c

V ∗cd

d̄

K̄ 0

Plenty of physics here we have no time to discuss.


