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Outline

© Fundamentals
e Symmetries in Classical and Quantum Mechanics.
o lIrreducible representations (irreps) of SU(2).
o Irreps of the HLG: Chirality, Parity and Dirac Equation.
e Quantum Field theory: complex scalar field.
@ Electroweak interactions: Glashow-Weinberg-Salam theory.
e Minimal coupling principle in classical mechanics.
o Gauge theories: Abelian and non-Abelian.
e Quantum Electrodynamics
e Fermi theory, IVB theory, parity violation and V-A structure of
weak interactions.
e GWS Theory. Spontaneous Breaking of Symmetries.
© Strong interactions:QCD.
Irreducible representations of SU(3)
Classification of hadrons: Eightfold Way, Quark Model
Gauge theory of strong interactions: QCD.
Running of couplings: Confinement and asymptotic freedom.
Experimental evidence for color degrees of freedom:.



Minimal coupling in classical mechanics.

Maxwell equations (c.g.s. units o = e?/4rhc ~ 1/137)

V.-E=p, V-B=0,
10B 10E 1

E+-2" = B—-"——="Zj
VX +c8t 0, VX c Ot cJ
V-B=0 = B=VxA
10B 10A
VXE+~-—=0 E=-V¢— ——
% +c8t = ¢ c Ot
10 (10¢
v P - c8t<c8t+v ) P
10E 1 1 1
VxB—fa—:fj = OA-V —%—I—V-A = -j.
c Ot c c Ot c

Remark: ¢ and A are not unique: ¢/ = ¢ + %% A=A-VA

with arbitrary A(r, t) yield the same fields E, B: Gauge invariance.



Covariant formulation

Define F0 = F; = —F%  Fil =

10E 1 1
VE=p VxB- U=l e g f

c Ot c _EJ’
10B 5 . ,
V-B=0, VX E—l——ﬁ—o & 9PFMY L 9RFYP 4 9V FPH = Q.

@ In terms of the potential four-vector A* = (¢, A)

=_ _10A
EE—Vvd)xf\at} & P =AY - VAN

@ Equations of motion in terms of A:
1 1
O F" = =¥ o OA —=0"(9,A") = =)
c c
o Electromagnetic currents are conserved

0,0, F™ =0 =  9,)" =0.



o Gauge invariance:
/ ! [
0] _¢+E§’ A =A-VA & A=Ay + 0.

e F is invariant under this transformation : (F*) = FH,

@ The e.o.m. takes its simplest form if - A = 0 (Lorentz gauge):

OAY =j"/c

o If A" is not in this gauge we work with AL = A, + 0N\ with A
chosen such that A = -9, A*.

@ Lorentz gauge does not completely removes the gauge
freedom. If A, satisfies 9- A =0 so do it AL = A, +0Ouf
whenever f satisfies [If = 0.

e For A* in the class of Lorentz gauges (0 - A =0) we can

always choose Ag = 0.
@ This leave us with the conditions (Coulomb gauge)

Ao =0, V-A=0,

@ The electromagnetic field has only two d.o.f.



Charged particle in an electromagnetic field

@ Newton equation + Lorentz force yields
d?r v 10A v
ar _q(e+ Y B): v 28, Y A).
M ae q( +CX q< Ve cat—i_c><V>< >
e But A= A(r,t) thus

dA OA
E—E‘F(V'V)A

(VXVXA),‘ZV-@,‘A—(V'V)A,'.
@ The e.o.m. can be rewritten as

d, . :
a(mx,- + %A,‘) = —q0i¢ + %X_,'a,'Aj
o A suitable Lagrangian for this equation is

1
unngzimﬂ—q¢+9rA.
C



@ The corresponding Hamiltonian is
H(r,p,t)=p-r—L(r,r,t)
with the canonical conjugate momentum

L
pi = 67 = mx; + gA,‘.
0x c

i

Finally

Minimal Coupling

The Hamiltonian describing the classical dynamics of a particle of
charge g in an external electromagnetic field is obtained from the
free particle description replacing H - H — q¢p, p — p — %A, or in
covariant notation, p# — pt — ZAM.




invariance

Consider a theory with a global symmetry, e.g.
L = ()"0 — mlp(x)

o Invariant under v — ¢/ = U(A)y) = e~ ") with A = cte.
e Notice: homogeneous transformation 9,(U(A)y) = U(A)0,4).

@ Noether's theorem: there is a conserved charge associated to

this symmetry.
Yang-Mills (1954): global symmetries are not consistent with
the concept of localized fields = Local Symmetries.

¥ = (x) = UNX))i(x) = e N (x)
Problem: non-homogeneous transformation
O = UN(X)) (0 — iqdu N # U(N(x))Oup.

The theory is not invariant.



@ Is there a way to get an homogeneous transformation
(Du(x)) = U(AX)) Dyt (x)?
o Covariance requires D,, = 9, + B,,(x)
(Dutp(x)) = D' (x) = (9 + B)U(x)¥(x)]
= [U(x)0 + 9, U(x) + B, U(x)]¢(x)
= U(x)[0 + U (x)3,U(x) + U™ (x) B, U(x)]¥(x)
= U(x)(0n + Bu)v(x).
@ Homogeneous transformation requires
U to,U+ U'B,U=B,= B, =UB,U " — (9, U)U"
e In our case U = e \*) is a complex number thus
Bl; = B, + iq0,\(x)
o Defining B, = igA, we get
AL = A, + 9\



@ This is identical to the gauge transformation property of the
Maxwell field.

@ The covariant derivative D, = 0,, + igA,, is just the minimal
coupling recipe (Lorentz force)

@ Local gauge invariance principle connects the local phase to
two separate properties of the photon field: gauge invariance
and minimal coupling.

@ Kinetic term for this vector field?. Two possible terms FFVF,,
and €,,a5F" F% = FIVF,,.

e But FF”F,, violates parity and time reversal!

1
LU0 = = P Fu + maA Ay

@ But the my term breaks gauge invariance!

Local gauge invariance uniquely dictates the QED Lagrangian

Laen = P (O +igAy) — mlb(x)— 3 F*Fu



Similar considerations for the complex scalar field yield the
following Lagrangian for scalar electrodynamics

£ = (0"~ igA")" (0, +igA") — mP "6 FI

Some remarks
© The charge g plays a double role:
e It is a measure of the strength of the interaction
e It is a measure of the size of the local transformation

@ The magnitude of the charge is not fixed by the local
transformation. It can be different for different fields.

© The Lagrangian is still invariant under global transformations
U = e~ %% with constant 6.

@ There is a corresponding conserved charge

Q = k(N — Np).

% can be identified with the electric charge or with other
conserved quantity: baryonic number, leptonic_number etc.



More remarks
@ In QFT fields are operators, they transform as ¢/ = U U.

1@, ()] = KNV — NP, ]
= Iﬁ:z)\:/d‘?’p <Up)\fp(X)[Na,ap>\] _ VpAfp*(X)[Nb, b2‘7>\]>

= —kY(x).
@ Similarly [Q,(x)] = ktb(x).
@ Considering U(#) = e~? and infinitesimal transformations
v = (1+iQ0)p(1 - iQY) = ¥ +i0[Q, ¥] + O(V)
= (1 —irf)p = UT(0)pU(0) = e "%,
@ In QFT the local transformation is done by U(#) = e~'??.
@ For k = g, it is convenient to normalize ¢ = eqr (e > 0 ) and

the covariant derivative is D,, = 9, + ieQA,,, where now
Q = gr(N? — NP) and U(#) = e—¢?Y.



@ There is a term for every charged fermion. Denoting the
fermionic field with the name of the corresponding particle

Lqoep = e(x)[in"(0y + ieQeAy) — mele(x)
+L_I(X)[’.’Y'“(a# + ieQuAu) — mu]u(x) N — %FW/FMV

@ More compact notation: Denoting the fermionic field of the
kind i as f; we get

= . . 1
Loep = Y F(IN" (0 + ieQiAy) — milfi(x) = 7 F* Fu.

1

@ Split into free particle and interaction terms
— 1_,, 1
L(x) = zf: PO O — melf(x) = 3 F" Fu = 5-(9- A)?

=D earf " Au(x)f (x)
f



Observables: Cross sections, decay widths

The cross section for the process 1 +2 —+3+4+ ...+ nis

o — )0 P+ pp = Xis P)Mal* dPps  dPps d*pn

3 3 cee 3
4\/ (p1- p2)2 — m2m3 (2m)32E3 (2m)32E4  (27)32E,
The decay width of a particle 1 — 2+ 3 + ... + n is obtained as

(2m)*0* (pr — Doi, Pi)IMA12 dPpp dPps d3p,

dl =
2E; (2m)32E, (27)32E3 7 (27)32E,

The invariant amplitude My is calculated perturbatively with the

Feynman Rules




Feynman Rules

The invariant amplitude is expanded in powers of the coupling
constant
M =aMi+ P Mz + ...

where a = g2 /41 << 1.

Terms in this series can be mapped to Feynman diagrams.
Feynman diagrams are constructed from Feynman Rules (FR).
There is a term in the FR for every factor in the Lagrangian.
Consider QED of leptons (f = e, ve, ™, 1)

£69 = 3 F 0 — melf () — 3 F*Fu — 5(0- AY
f
3 ear PO ALX)F()
:

. . 1 .
Propagators=i(kinetic term operator)” " in momentum space.
Vertex= —iL;,: in momentum space.



Feynman Rules for Quantum Electrodynamics (o = 1)

_ p . m
\. u(p, \) f(p, A i(p,N) e—s—o /%

@;)‘\). AN i—;fr;
I
ok, 1) ieqy"
Yk Wy ek, \) /N

The contributions to the amplitude for a specific process are given
by all the diagrams that can be drawn with the corresponding
initial and final states.




Non-abelian gauge invariance

o Take N species of fermion fields f;, j = 1...N

N
L= Z fli 0 — mjlfy = Flin" 0, — Me]f

with M¢ = Diag(m1, mo,...,my) and f = (fi, fa, ..., fy).
o In the case m; = mj = m, My = mlyyn and this (free)
Lagrangian is invariante under the global SU(N)

f—f=Uf =eT%f Ue SU(N)

e What if we assume local SU(N) symmetry: 2(x)?

@ Fermion fields do not transform homogeneously

Ouf' = 9, [U(x)f] = (U9, +8,U)f = U(8,+U"t0,U)f # U(x)0,f



e Homogeneous covariant derivative: D,f = (0, + igA,)f:
D.f' = (Ou+igA,)U(X)f = U[(0u+ U 9,U) + igU A, UIf
= UD,f = U(0, + igAu)f,
@ The vector gauge fields must satisfy

U™'0,U + igU™ AU = igA,

Change under the gauge transformation according to
_ i _
A, =UA U + §(8MU)U L
Thus A is a SU(N)-valued vector field. The simplest
realization is

A, = T2A2.

Kinetic term for the N vector Fields AZ? Notice

D f' = UD,f = UD,U~"Uf = UD,U*f".



@ The operator D, transforms covariantly DL = UD, Ut
@ Define the field

_I' .
Fu = ?[Du, D)) = 0,A, — 0, A, + ig[Au, Al
it also transforms covariantly
Fl, = UFu, U™

e FM is strictly invariant only for U(1) transformations.
@ A gauge invariant kinetic term can be constructed as

La= —%Tr(F“”FW).
@ Notice
Fuy = 0, T?AZ — 0, T?AZ + ig[ TP AL, TCAS)
= T?(0,A3 — 0,A% — g fanc ALAS) = TPFF,,

where we used the group algebra [T2, T?] = i fopc T€ with
fape antisymmetric.



@ We use group generators normalized as Tr(T2Th) = %5313.

4 W|th these COnVentionS
C T FHY - Fa,w/ Fa
A 2 ( /J,l/) q J22 7

@ Again, a possible mass term for the gauge fields is forbidden
by gauge invariance.

@ The gauge invariant Lagrangian

L= F(7(Opd + BALT?) — milf — J THF"F)



Sumarizing

@ Local SU(N) gauge invariance requires the existence of N
vector fields A7

@ It does fix the masses of fermion fields up to a global constant
Mg = mlyxn

@ Dynamics is dictated by the local gauge symmetry. We have
N gauge fields but only one coupling constant g.

Gauge transformations
fof = UF=eT70F A = UAU + é(auU)U*1

Gauge invariant Lagrangian

Vi 1 "z 1o aa Ta
L= fl(iv" 0y — m)1]f — ETr(F/ Fu)—gf[" AL Tf



Weak interactions: Fermi theory

@ Nuclei are composed of protons and neutrons.
@ Nuclear beta decay related to nucleon decay n — pe™v.
e Fermi (1933): Following the current-current electromagnetic
structure
Lint = @ﬁy“n éyuv +h.c.

V2

e Neutron beta decay n(p1) — e(p2)7(p3)p(ps) is induced by
the following Feynman diagram

n(p1)



A calculation of the decay width yields

G\2/(m,, - mp)5

r =
30(2m)3

The measured mean time-life of the neutron is 7, = 881,5 seg,
thus the corresponding decay width is

h 6,582 x 107 GeV

My =— =7,46 x 107*%GeV
op = 8815 7,46 x 10" “°Ge

Using m, = 938,272 MeV/, m, = 939,565 MeV we get
Gy =3,9 x 1072GeV 2,

This crude estimate yields a very small coupling. Interaction is
really weak.



@ Other structures posible: pl'n &l with T = 1,~5 v#45, ohv.

@ The scalar, vector and axial-vector currents yield similar
couplings G ~ 107>,

© Contact interaction yields a Gy/d(x) potential. Short range
Interaction.

@ EM interaction involve the exchange of virtual photons. Long
range interactions V/(r) = €?/r corresponding to a 1/g?
propagator.

@ The propagator for a massive particle goes like 1/(g%> — M?).
The range of the potential is of the order of 1/M.

O At low energies (g2 << M?), it yields a point interaction with
coupling ~ 1/M? << 1.

@ Is this happening for weak interactions? Can weak interaction
be produced by the exchange of a new massive particle? !

1T.D.Lee, M. Rosenbluth, C.N.Yang; Phys.Rev.75 (1949)-9905:



Weak interactions: Intermediate Vector Boson

p(ps)

@ The QED-like interacting lagrangian is

Lint = gv(Py'n+ &y'v)V,
o It yields the following amplitude (k = (p1 — ps)?)
—8uw + Kuk v/ My
k2 — M2 + ie

a(4)y"u(1)a(2)y,v(3)

—iM = u(4)[igyy"]u(1)[i

a(2)[igvy"]v(3)
k2<_<>M2 gV

V



@ This is a Fermi interaction with

G z 2g%
Cv _ 8y e V2gy
V2 M, Gy
@ Assuming QED-like coupling £ 1072 we obtain

4r

2 2
My = ,/\[gV ~ 67 GeV
Gy

@ Promising scheme. Including the muon-neutrino interaction it
predicts muon decay

Line = gv(py"'n + &YV'v + in*v)Vy

e (p2)




@ The decay width in this case is given by

1 2gémz_ G\%mz

= = .
8(2m)® 12Mmy,  96(27)3

@ The measured muon lifetime is 7, = 2,197 X 10 %seg
corresponding to a decay width s, = 3 x 10719GeV.

e Using m, = 0,105658GeV we get

2 3|—/tx
Gy = M =236 x 107° GeV 2.
mp,

e Similar coupling supports the idea but fine tuning is
needed.



The 7 — 60 puzzle

© 0 o6 o

The 7 and 6 mesons were discovered in cosmic ray
experiments in 1947.

They have identical masses (m = 493,6 MeV) and lifetime (
7 = 1,23 x 1078seg) but different decay modes.

0 — ntnl, T ot
Dalitz (1953): Parity(27)= +1 and Parity(37)= —1 .
Identified as different particles.

Lee-Yang (1956): Consequences of parity violation in beta
decays and other weak processes.

Suggest possible experimental tests of parity violation in Co
beta decay, i beta decay and m — ev.

C.S. Wu et. al. (1957): High parity violation in Co% beta
decay. Lederman et. al.(1957), Telegdi et.al. (1957): Strong
violation of parity in the chain 7 — uv — evvw.

7 =6 (now named K™) and parity is strongly .violated.

60



V-A structure of weak interaction

@ Marshak and Sudarshan (1957): available data suggest
maximal parity violation for leptons. V — A Lorentz structure.

Lint = %[ﬁv”(l - gvs)n][év“(l -+ %[ﬁv”(l — P)[EYL(1 = ®)V] + h.c

@ The decay width in this framework is

ro_ 1 GEm
8(2r)® 3
© The corresponding Fermi constant from the measured muon
lifetime is
192731k,
Gr— 12 Tew _ 1641075 Gev—2

5
my



@ Similarly the decay width for the neutron beta decay is given
— 84
by (0= g2
_ G(mp —mp)®

M= 15(20)3 (1+3p%).

@ The Fermi constant extracted from the neutron lifetime
satisfy

15(27)31ky
Gny/ (14 3p2) = W =277 x107° GeV 2,

e A universal coupling (Gy = Gr = 1,16 x 1075 GeV~2),
requires the axial to vector coupling ratio

&A

p=—

gv

=125

for the nucleon weak current.



Effective theory for leptons at low energies (E < GeV)

@ Gauge theory of e.m. interactions + effective theory for weak
interaction ( ¢r/r = 3(1F7°)¢ = v1/rY)

N : =[O E 1 «
L = e[iv*(0q — ieAs) — mele + D[iv*0q — mylv — ZF ‘BFmg

1
+ %(éym)va— he = VO Vg + MGV Vot e o p,

@ Weak interaction is chiral, involves only the left components
&Yy v = &(yr + Y)Y v = EYrRY Ly = € it
@ In terms of the chiral fields, taking m, = 0,
L = € inv*0neL + €RiN*Oner + UL iV Oavy + VRIN*OaVr

L _ _ _ 1
—ie(éryer + erv¥er)Aa — me(EreL + €LeR) — ZFaﬂFag

8 - «a - 1 af 2\«
— Vv h.c.— =V**V My, VeV, ,
+ﬁ(ew v )V, + h.c Z W + My +e—pu



@ Right components of the fields do not feel weak interaction.

@ Both (right and left) components of leptons feel e.m.
interaction with the same strength.

@ A gauge theory of weak interactions must involve only
transformations of the left fields.

@ Fermion mass terms would not be invariant.

11

272

o If we pretend the IVB to be a gauge field, the mass term will
be forbidden by gauge invariance.

@ Vector bosons - (3, 5) irrep of the HLG- are not chiral.



Weak interactions of leptons: G-W-S Model

@ The free particle Lagrangian reads

L = €1 inv*0neL + €RiN*Oner + UiV Oavy + VRIV*OaVr
= (Z/L,e/_) i7* O, ( ) + ERiIV*0ner + VRIV OuVR

= Zi’y“&uL + ERIVYOner + VRV OnVR

e Natural choice SU(2): Left fields as SU(2) doublets, right
fields as singlets.

L= <GL>, R_eR,I/R

It doesn't work (Glashow (1961)).
@ Next minimal choice SU(2) ® U(1). Group generators: {2, >
satisfy
Ti T Tk 7Y

2l =iy 15 51=0



e Gauging the SU(2), ® U(1)y : covariant derivatives

. O i Y

D,L = (8“ ey W', — /g/28M> L,
Y

D.,R; = <8“—/g'28u) R;.

o Notice: e, is not a singlet under U(1)y, i.e. U(1)y # U(1)g.
@ Lagrangian
_ 2 1 1
L =Liy"Dyl+ )  Riiy"DuR; — W3, W — 2B, B"
i=1
Left field terms

_ 0, — iEW3, —igaB, —iE W,
LintD,L = (71, &) in" T, <”L>

71\@ 0O +IEWS, —ig' 5B, | \eL
where W%, = 7(W1 TiW2).



_ 8, — iEW3 — g/ Y4B Y — i EWte
LinD,L = (7, 8) iv" (.“g 2 2.g“)3 ,f g
—i5W, v+ (0 +i5W; —ig 2L B,)er
= = - L = g 3 /YVL
= D iv"0uvL + eLin''Oe Ly (5 W, +eg TBH)V/_
g _ L + g — - L g 3 /YeL
+\ﬁywl W, e + ﬁewl Wivi—en" (GWi - & — Bu)e

2
= . _ . Y _ . .Y
Z Riiv* D, R; = priy* <8M — /glzRBu> VR + erint (8# —ig’ ;R Bu> er
i=1
g g

= IjRI."/’u(r)#l/R + éRiﬂ/”’(?ﬂeR—i-EDR Y YI,R BNI/R—&-EéR’)’“ YeR B#GR

Recovering QED: Define
WE =cos0Z, +sinfA,

B, = —sin0Z, + cos0A,



/

_ g Y g - L

/ YeL

2

/
cosO)A.e. + %é,w“ Yer cOs0A, er

=— éw“(% sinf — g
/

Y.
— éyy“(% cosf + g/% sin0)Z,e, — %éRfy“ Yersin0Z, e

Similarly for the neutrino terms

/

Yy, g _
2L B,u,)l/L + EVRA/’”“ \/I/R

- /8
VL'Vl (EM/;:?J'_g/ B,U,VR

/

L cos )AL + %ER'W Yy cos0A, VR

_ Y,
:Dw“(% sinf + g’ >

- U g /YVL . g/_ m .
+ Ly (5 cost — g —sin 0)Z,v — S URY Y sin0Z,vg



The measured electric charges of the electron and neutrino require

Y /
%sin@—g’%cos@ze, —%YeRCOSQZE‘

\& !
%sin9+g/7Lc059:0, %YURCOSQZO

@ The last equation impose Y, = 0. The remaining Egs. yield

/

gYeR . 0:_5

e=7 Y., sin > Yercosl, Ye,=VYe +VY,,.
@ It is conventional to assign Y} = —1 = Y, = —2, such that
the Nishijima-Gell-Mann relation holds for all particles
Y
Q= T3 + E

@ In this case
e=gsinf = g’ cosd),
e Notice that vg is a singlet of SU(2), @ U(1)y.



Weinberg-Salam Model content so far

@ Massless QED
) . _. . 1
Loep = €Y (0 + ieQAy) e + Tiv* (Do + 1€QAL)V — ZFQBFaﬁ
@ |VB correct interactions
_ & /(= - ~ +
Livg = \ﬁ(ew’* W, v+ iy Wer)

© New interactions with neutral bosons: neutral currents
Lync = —éyy“(% cosf — g,;’ sinf)Z,e, + g’ sinery" Z, er
+ DLV“(% cosf + é’;, sinf)Z,v,
© Gauge bosons kinetic terms and (self-) interactions

1 1
Log =~ W3, W — B, B"



Problems: massless fermions and massless gauge bosons (W*, Z°)

@ Fermion mass: forbidden by chiral symmetry (chiral structure
of weak interactions).

@ Gauge boson mass: forbidden by gauge symmetry.

@ Glashow (1961): SU(2) ® U(1) with explicit symmetry
breaking by mass terms. Partial symmetry.

@ Weinberg (1967), Salam (1967): SU(2); ® (1)y with
spontaneous symmetry breaking a la Higgs, following
Nambu-Goldstone.



Spontaneous Symmetry Breaking: Nambu

@ Let us consider a real scalar free theory
L= 5 #gb@“gb — Em qb

@ We have been considering m? > 0 so far. Mandatory since
E = \/p? + m? > 0 for the particles.
e A QFT with m? < 0 is not tenable for free particles.
@ The vacuum expectation value of this field vanishes
d3p

00610 = [ Gy (0lap/0)e P + (0la}j0)eP=] =0

@ Let us consider now an interacting real scalar field theory
whose interactions are described by a potential V/(¢)

£ = 30,60"0 — V(0).



@ Expanding the potential around a minimum ¢g
‘ “ ‘ 1
V(9) = V(90) + V/(00)(& — d0) + 5 V"(90)(6 — d0)* + ...
@ For the interacting theory the Lagrangian can be written as

£= 20,(0 — 60)0(9 — o) — 5V (00)(6 — o)’ + ..

@ Conventional interactions have a minimum at ¢ = 0. In this
case the mass of the particle is m? = V"(0).

@ But the expansion (and the particle content) actually depend
on the nature of the potential. Consider e.g.

1 A
V(¢) = 5m2¢>2 + Egﬁ“, A>0
@ The extremals are located at
A
V/(¢0) = do(m’ + 5) =0

o If m? > 0 the only solution is ¢o = 0. In this case
V(o) = m? > 0 and ¢p = 0 is indeed a-minimum.



e But if m? < 0 we have another solutions at ¢g = ++1/—6m?2/\
with V/(¢) = (m? —3m?) = —2m? > 0, i.e. it is indeed a
minimum. For ¢g =0, V" (¢o) = m? < 0,i.e. we have a
maximum. QFT expansion must be done around ¢.

T
\ 1
\

\

4

A
—¢

2~
2 4

mZ

V(¢)=—1¢'



@ Rewriting the Lagrangian in terms of £ = ¢ — ¢g we get
1 1 A
_ wy o+ 2.2 A og
L= 3060000 = 5m70" = 1@
1 s 1 oo 1 3 A4 ‘
= Eaufal §— 5(—2”7 )§° — 6)\¢0§ — Ef — V(o)

o Notice that £(¢) is symmetric under ¢ — —¢.

e Expansion around (0]|¢|0) = 0 makes no sense, particles would

have E = /p? + m2, imaginary for p> < —m?,. The
Hamiltonian is not Hermitian.

@ We must choose a minimum of the potential to quantize the

theory. We have two possibilities: ¢g = £/ 76/\’”2. The
¢ — —¢ symmetry is broken with this choice (SSB).

@ The particles have a mass —2m? and cubic interactions. The
symmetry of the Lagrangian does not show up in the
spectrum, it is hidden.



Spontaneous breaking of a continuous global symmetry

@ Let us consider now a continuous symmetry. Take two real
scalar fields ¢ = (¢1, ¢2) with a similar potential

1 m? A
== COMp — — P2+ =Pt
L > @ - O > o° + 4!¢.
@ For m? < 0 now the minimum of the potential satisfy

—6m? —6m?
OTo+ ¢20 = — = ldol=1/—

We have a continuously degenerated vacuum. Must choose
one of them to quantize the theory.

V.




@ The Lagrangian and the vacuum have a SO(2) symmetry.
@ Choosing a particular vacuum breaks this symmetry. Take
¢o = (0,v) and define £ = ¢ — v

Av2 Av2

1 1
L= 50u10" 1 + 58,@8“5—*( + 2R+ )

1 1
= E uﬁblauﬁbl + Eauga'ug - E(_2m )52 +

@ One of the fields turns out to be massive with a mass
—2m?.The other field is massless.

e Considering N real fields with the analogous potential yields a
SO(N) symmetric Lagrangian.

@ The minimal is given also by |¢o| = _6—’" The vacuum is

SO(N) symmetric.

e Choosing ¢ = (0,0, ..,0, v) breaks this symmetry down to
SO(N —1).

@ We get N — 1 massless fields (Goldstone bosons) and a
massive field with mass —2m?.



Goldstone Theorem

o Consider a general QFT with interacting scalar fields ¢.
Assume a potential V/(¢) with a symmetry group G whose

generators are [, a=1,2 ... N.

@ The vacuum configurations are obtained from % 5 =0.
0=V

There will be M < N generators leaving the vacuum invariant
L%;vi =0, a=12..M
These generators span a subgroup H C G. The remaining
N — M generators satisfy L"",-jvj- #0.
@ Under an infinitesimal group transformation:
(5(;5,' = —I'HaLa,-j(;Sj
the potential is invariant thus
oV



@ Taking a second variation we get
52v 2 bt o,
5iddk i 6i
@ For the vacuum configuration the last term vanishes
52V
L% o; =0.
0pidgk i) do=v

@ Expanding the potential around the vacuum ¢g

V(9) = V(go) + 5 (M) (61— v)(ds — i) + ..

kZO.

thus
(M) L%v; =0, a=12, ..
@ Fora=1,...M we have La,-jvj = 0 and this condition is
satisfied.
o Fora=M+1,..., N we know that L?;v; # 0. The matrix I\/I
must have N — M vanishing elgenvalues
@ There are N — M massless modes: Nambu-Goldstone.



Spontaneous Breaking of Gauge Symmetries: Higgs

@ Let us consider escalar QED
L = Du¢*Dlg — m*¢* ¢ — A(6"¢)? —*F v F*
e The Lagrangian is invariant under U(1) local transformations

¢ — e ¥y, A, — A, — é@,ﬁ(x).

o If m® < 0, the minimum is given by |¢o| = \/—’2”—2 = %
o Convenient to write the field as ¢(x) = p(x)e~ "¢ A gauge

transformation allows us to do this. The minimum are given
by ¢o(x) = F5e 0.
@ Redefine the field: use
ei{/v
V2

b="—(o+v)



@ Then perform a gauge transformation

_i 1 1
d— ¢ =e Vg = \ﬁ(a—i—v), Ap— A, = Au=—0u,
to obtain the following Lagrangian
_ 1 / 324 1 1z 1 2 241 Al
L= — ZF’“”’F + 5(%08 o+ 5ev ALA

1 1
+ §e2ALA’“a(2v +o0)— 502(3)\v2 + m?)
1
— Avo® — Z)\o*“

o The gauge field acquires a mass m? = e*v2/2.

@ The £ field "disappears” from the spectrum. This d.o.f
reappears as the longitudinal mode of the gauge field.



SSB of non-Abelian gauge symmetries: SU(2),

®1
®2

1 v
L = (D,®) D'd — m*dTd — \(dTd)? — ZW"W WK

@ Consider now a complex scalar doublet ® = <

) of SU(2);.

with DH® = (10* + igT?W7)®, is invariant under
i

PP =Ud=e"T"0, W,> W, = UWMU‘1+E(8MU)U‘1.

o If m® < 0, the minimum of the potential satisfies |®| = v

with v = _2—'1\’2 Parametrize the doublet as
b= eLv-g'T <g> = eig'T&l

where {&1,&2,£3, S} are real fields.
@ Choose the vacuum such that only S acquires v.e.v. and shift
S —=1(oc+v).



@ Now perform a gauge transformation with U = e €T The
resulting Lagrangian is

. . i i 1
L=(D®)D'nud - mdid — \(d710)* - 2 w'a,, w'a

with D'pud = (O* + igW'm)d.

@ The mass terms for the gauge bosons are

EGBM = (igW’“éo)Ting&)o
where &g = (v/?/i) A straightforward calculation yields

2,,2
gV
Lepm = =5 — (W1, WH + W3, W 4 W3, W),

o Similarly, the scalar field o has a mass m, = —2m?.



Sumarizing SSB of SU(2) gauge symmetry:

© We started with 3 massless gauge fields and a complex
doublet containing four real scalar fields.

@ The gauge symmetry is SU(2), there are three generators T°.

© The choice of the vacuum completely breaks down this
symmetry T2®q # 0. There are three Nambu-Goldstone
bosons: £1, &2, &3, and three massless gauge fields. The particle
content is not obvious.

@ A gauge transformation clearly shows the particle content.
The NGB convert into the longitudinal modes of the three
gauge fields which this way become massive.



Weinberg-Salam: SSB of SU(2), ® U(1)y

@ We add the complex scalar doublet to the previous Lagrangian

2

1 o.; 1 a auv 1 v

£ =Lin'DuL+ ) Riin"DuR; = W3, W — 2B, B"

i=1

+(D,®) D' — m*dTd — \(T)?,

with m? < 0 and the SU(2); ® U(1)y covariant derivatives
. Ojf i . Y
D}LdD = <8u—lg2WM —Ig/28#> (D,

@ We parametrize the complex scalar doublet as

' L 0
O =ep(—-6 o), B (k(erH))'

@ Now perform a gauge transformation with U = e‘ig"’,
eliminating the &, fields from the Lagrangian.



@ The resulting Lagrangian is
2
T = . 1 . ,
L=Lir"DyL+ Z Riin"D,R; - ZW/auV wrer — 4B,W B
i=1
+ (D) DFd — m*HTd — A(H1d)2.

where

. - y

Y
DR = ((%—Ig’zBL) R;

~ . Y -
DL(D = (a g2wla Ig2BL>(D

The ]DL@\Z term reads (we skip the ’ label for gauge bosons) :

o = 5(gW;i +&'YBy) Wl o
! - ! / v
_ﬁgwﬂ o — 5(_gWu + & YBM) V2

2




A straightforward calculation yields

- 2 1 ] <
1D, = %ijvfﬂ(v +HY + S|0"H — é(—gWi + &' YuB)(v+H
Lo v2 3 / 2, VP

2
g +ia/—
2 W“W“-i-...

From the previously considered mixing we get
gWi —g'YuB, = (gcosO + g'Yysin0)Z, + (gsin — g’ Yy cos0)A,
= (gcosf+g'Yysin0)Z, — g’ cosO(Yy — 1)A,,

where we used gsinf = g’ cosf in the last row.
If we choose Yy =1, the photon remain massless. It can be easily

shown that
/

g . g
B sin = ———
Ve +g? Ny
gcosl +g'sind = /g2 + g2 = ge'

Ccos

cosf =




e Finally
2,2 2,2
o gv veg —
|D,®* = fa#Ha W+ 522" ZM+TWJW g

and the masses of the gauge bosons are given by

2
2 g2v? 2 myy
miy, = m5 = —2%~—.
W= Ty 27 cos20
@ The massless mode is
g'B,+ ng

A=

@ The Fermi coupling, already fixed from muon decay is

G 2 1 1
SF 8 L S 046 GeV

V2 8my,  2v2 V2GE



Fermion masses

@ The problem of the gauge boson masses solved by the
spontaneous breaking of gauge symmetries.

@ We can trace the origin of the mass term to the interactions
of the Higgs doublet with gauges bosons introduced by the
covariant derivatives.

@ Still remain the problem of fermion masses. Forbidden by
chiral symmetry.

@ So far, we have no interactions of the Higgs doublet with
fermions.

@ The only constraint for these interactions is SU(2), @ U(1)y
gauge symmetry and renormalizability.

@ The lowest dimension product of L and & invariant under
SU(2) is L® (and its h.c. dTL).



@ Since eg is an SU(2); singlet, the interaction
Vint = geL®er + h.c. = ge(vi¢™ er + €1¢%€g) + h.c.

is SU(2), invariant.

e The U(1)y quantum numbers are additive and Y7z = —Ys.
This term is also U(1)y invariant.

o After SSB this term yields
Vipe = ge(Lbeg + erPTL) = %(e'LeR + éper)(v + H)

o After SSB the fermion acquire a mass me = %’.




Dirac Neutrino masses

e Right neutrinos have Y;, = 0 and are also SU(2), singlets.
Not required at all by the gauge symmetry.

o We know that for SU(2), the 2 irrep is equivalent to the 2.

o The field & = ioo®* transforms like ®.

@ Involves the conjugated scalar fields, has the opposite U(1)y
quantum numbers

@ The lowest dimension gauge invariant interaction is

Vint = gZ,ZdADyR + h.c.
o After SSB this term yields

Vine = g (Ldug + vpdTL) = %(um + vk ) (v + H)
_ 8wV

@ After SSB the neutrino acquires a Dirac mass m, = NeE

Measured masses m, < 1leV.
@ Right neutrino is a gauge singlet. Majorana masses vgrvg are
nossible



Summary: SU(2), ® U(1)y — U(1)em -

The complete one-generation leptons GWS Lagrangian is

- _ . _ . 1 1
L =Liv*D, L + ériv"D,er + Vriy"Dyvg — ZWa/W W — ZB’“’ B

—|—(DH<T>)TD“&> — m?otd — /\(CTDT&))2 — (geZ&DeR + g,,Z&DZ/R + h.c.)
where

Y %
DL = <a# - ig% wa, — ig'2BM> L, D,Ri= (a“ - ig’28#> R,

S = io2d*.

D,® = (a“ — ig% wa, — ,-g/;’BM) o, &= <8H> :
V2
@ Neutrinos discovered in 1956 ( Cowan-Reines). There are two
types neutrinos : ve and v, (Lederman-Schwartz-Steinberger
Brookhaven 1962).
e 7 lepton discovered in 1975 (Perl et.al. SLAC) and there is an
associated neutrino, - (DONUT Coll. FERMH.AB2000).



@ These lepton have same electroweak interactions. There is a
replication of families with exactly the same terms

Ve vy, Vs
(), () (),

e GWS predictions: i) Neutral currents; ii) Gauge bosons
self-interactions, iii) Higgs. Weak coupling related to the e.m.
coupling through the weak mixing angle 6.

@ Except for v = 246 GeV no new information at the time, but
plethora of new physics for experimentalists.

@ Unknown parameters: sinf, A\. The Yukawa couplings are
given by the fermion masses, e.g. ge = v2me/v.



Neutral Currents

o New neutral currents due to the exchange of the Z° boson

Lnc = [gfér"'eL + grérY er + g VetV Vel 2y  +1 +7
= [6v"(gv —gar°)e + M (&y — ga W2+ +7

with
F_ 8 f -2} f__& in20
g = p—— T3 — Qrsin“ 6|, gk cosGQfsm
f g f f
-_8 7 [T 2 0
v 2cosf 3’ €a= 2cos€ 3 Qrsin®

e NC discovered at LEP in 1973 in the v,e™ — v e~ process:
sin’f ~ 0,2.
o With this value:

TOlem

My =,/———— ~ 80GeV, = Mz =~ 90GeV.
W V2Ggsin? 0 ‘



@ The W boson was discovered at LEP in 1983 with a mass

My, = 80GeV.

@ The Z° boson was discovered at LEP in 1983 with a mas
Mz =91GeV.

@ The Higgs boson mass is: I\/l,2_, = —2m? = 2\v2. Free

parameter, there are no direct predictions for this observable.
@ However, perturbative coupling requires A << 1. A light
Higgs boson is expected.

@ It enters many observables and gradually the mass was
bounded from electroweak precision measurements.

@ Finally it was discovered at CERN in 2012 with a mass
My = 125GeV.
My

@ With this value A = 5% = 0,125.

2v2



Weak interactions of hadrons: beyond beta decay.

@ Problem: Eightfold Way currents yield inconsistent predictions
for K™ — ptv, and 77 — ptuy, decays

Tkt =12x1078seg = T(K")=5,3x10"*MeV,
Tt =26 x 107 8seg = T(77)=25x10""MeV,

BR(Kt = uv,) =063 = T[(K"—pu'y,)=33x10""MeV
BR(r" — utr,) =099 = TI(7" — pty,)=25x10"""MeV

@ The ratio of these decay widths is
MKt — utuy,)

M(rt — pty,)

lexp = 1,3.

o Current-current interaction for K*(Q) — pt(p1)vu(p2) yields
—iMk = (K*|4,10)@(p2)7" (1 = v°)v(p1) = gk Quid(p2)7" (1 = +°)v(p1)
g2 (M — )

2 a2, 202 2
M| = agiem? (Mg — m?,), = Mk = W




@ Analogous results for the pion decay. The ratio

FKT = ptv,) _ gkema(Mic —mi)? gk 176
Mt —pty)  g2ME(m2 —m2)2 g2 "

@ SU(3) symmetry yields gk = g, and we obtain a huge ratio
compared to the experimental result.

@ Nicola Cabibbo (1963): Consistent results are obtained for
weak decays of hadrons if we assume i) Eightfold way
(conserved vector currents) + axial currents ; i) V-A
structure for leptons ; iii) rotated currents

Jp = cost9c(VuA5:0 — ASSZO) + sin QC(VHAS:I _ ASSﬂ)

@ This amounts to gx — gssinf¢, gr — gscosf. in the
previous calculation. The measured ratio yields

MK+ — N+Vu) — tan24 m73r(MI2< - m2)

TR R
F(rt — pty,) M (m2 — m?2)

= 1,32 = sinf. ~ 0,20



Weak interactions of quarks

Many other observables involving weak decays of hadrons
consistent with this hypothesis. Weak interactions do not
respect SU(3) symmetry.

Today we understand weak interactions of hadrons in terms of
weak interactions of quarks.

After deep inelastic scattering experiments (early 70's) the
existence of quarks was firmly stablished, hadrons composed
of u,d,s were known.

The quark doublet of the weak interaction is

</>
qr =
,L

Right fields v}, di, s, are SU(2), singlets.

We use the dash to remark that these are quark states with
well defined transformation properties under SU(2); @ U(1)y.
Do not necessarily coincide with the pure states 3,3 of SU(3).



@ In the next slides we skip the dash to simplify notation. Will
come back to this point when we discuss mass terms.
e The U(1)y quantum numbers can be obtained from the
Gell-Mann-Nishijima relation Q@ = T3 + g
1 4 1 2
Y ==, Y ==, Y(d)==, Y(dgr)=-—=.
(UL) 37 (UR) 3’ ( L) 37 ( R) 3
The additional terms in the GWS Lagrangian are
L =q1iv"D,uqL + Uriv*Dyug + driy* D, dr
— (gudiPur + 84qLPdr + h.c.)
where

O,

. Y Y
Dqu - (au — 18 2 W‘L - Ig/2B/L> ac, D,uqR; = <8u - lglzBu) ar;

. 0 R . v+H
¢:(V+H>, ¢:ia2¢*:(ﬁ).
Ve 0




Left field terms
M

. 3 i 8 +
Lin* DL = (d, dp) in* Ou B WS — B3 B ’ﬂYW # <UL>
' ’ i mW s Ot iEWS, —ig'5+B,) \dL

(Op — i%Wj —ig’ Y2uL B,)up — i% WjdL )

. . Y.
—iBEW,u + (9, + iEW? —ig’ 5+ B,)dL

= (G, dp) in" (

\
2L B/L)UL

g - + g 5 v Ton&us Y
+EUL7”W,,, d. + ﬁdﬂl W, ur—dp )"(5 W, —g 75,1,)dL

For the right fields we get

= upiv" 0 uL + JL/'*,*‘@/,,dLJrJLW“(g V\/ﬁ +g

2

/ /

= uriv"Ouur + dg i7" 0, dR—&—gE urY" Yy Buur+ % dry* Ydr Budr

\ = . Y
ER”’Y# (8;1, - iglzRBﬂ> ur + dRI’Y# (a“ — Ig/dRBH,) dR =



Recovering QED: Recall
Wlf =cos0Z, +sinfA,
B, = —sin0Z, + cos0A,
/

— YU
UL“//L(g‘/VE‘Fg/ QLB/L)UL+%UR7 Yur Buug =

M

2

/

cos0)A,uL + %URM‘ Yur cos0A, uR

:Um/“(% sinf + g

/

)Z,uUL — %L_IR’}/“ Yug SIN QZuUR

Y,
+ Ew“(% cos — g’ 2“L

Similarly for the d terms
_ Y ’_
~d " (EWE — g 2LBL)dL + S dr” YdR B,.dg =
- , Y,
=—d* (5 sinf — g’ —t > £ cosO)A.d + = dR’y“ Y cos0A,dr

- Yq,
— diy* (% cosf) + g/t sin0)Z, dL—*dR’Y“YdRS'”OZ dR



@ The electric charges of the u, d quarks require

/
‘g i %YuRcosezequ
Y /
—%sm9+g > Lcosf = e qq, %YdRcosezeqd

@ These equations can be summarized as
Y]
eQr = gsin 97}1 + g’ cos 9%

where f = u,d, and x = L, R.

@ These equations yield

e=gsinf = g’ cosd),



Neutral Currents

o New neutral currents due to the exchange of the Z° boson
uf= 3 u - u
Lne = let (@, du)y" 6F <di> + (r, dr)7" GF, <d2>]zu

= [i7v"(gy — gA7°)u + dv"(g) — ga7°)d|Z,

with

Gfi o 97} — etan0Qy,

g/ = 2Ci5073f, gh= 5 cos 073 — etan Q¥
Z0 70

u d '
ﬂ—‘\)\,ﬁ\?\: —I’W(g —8a ’Y ) ‘)—{— _,,Yu(gg _ ggv5)
u

d



Charged Currents and hadron weak decays

g—p,+ g_ —
—my*Wrd + ==div* W, u
\/EL'Y HL\/EL’Y w UL

Neutron beta decay:n — p e™ v, Kt—pt vy

Meson decay: TS

W= e~

)

Not enough, Cabibbo factor missing: d — d’ = cosfd + sin0s.

W, W,

J_{: —i% cos Oyt ‘f_{: —i% sin Ocy,71
u u

Phenomenology requires 6.: what is its origin?



Cabibbo angle and Charm quark

Some reactions induced by weak interactions were not
observed e.g. KO — putp~

cosf. Wy, B
i
KO u Vi M =~ G2sin . cos .
z +
5
sin 6. Wj K

One loop calculation beyond these lectures, but upper bounds
(at the time) on the decay width much smaller than predicted.
Glashow-llliopoulos-Maiani (1970): this and other suppressed
processes can be understood if a new "down-type” quark

exists: Charm quark "c".
Two generations of quarks for weak interactions.

1L — ! ’ 2L /
d/, S/



Weak eigenstates vs mass eigenstates: Cabibbo angle.

@ The most general dimension 4, SU(2); ® U(1)y invariant
Yukawa Lagrangian is:

Vyuk = y1195, P Uk + y12G7, Dk + y2105, D uk + y2oqh, P ck
+ g11qy, Pdi + 812G, Psi + 2105, Pdr + g2qh, Psp + h.c..
@ After spontaneous symmetry breaking

Vory — 2 T 7 T 7o
Yuk = ﬂ[)/n Uy Up + y12U) Cp + Yy21C U + ¥22C5, CR

+ gi1d dg + g12d. sk + go15, di + g2os)sg] + H — interaction
_ Vo5 5y (e Uk) = 5 <g11,g12> (d{?)]
R~ u,c + (d ,S

V2 [( i) <Y21’Y22> (C;? (dL:<1) &1,82) \ Sk
= U MYUg + D' MP Dy,

@ The mass matrices MY, MP are not diagonal. Weak
eigenstates are not mass eigenstates.



@ Calculation of physical processes requires to use mass
eigenstates.

@ Every square matrix can be diagonalized by two unitary
matrices

AMYAL = Mg B.MPB], = M2,

with I\/l(%ag = Diag[m,, m¢]; Mﬁag = Diag[my, ms] and
AR/L, Br/L are unitary matrices.
@ Then

Vyue = UL ATALMY AL AR UR + D', B BLMP Bl,Br D}
= UMY, Ug + DM, Dg
= mylLug + McELcr + mydidr + ms3Lsg,
where

U =AU,  Ug=AgUs, D =BU,, Dg=BrUs



@ Notice that the free field terms are invariant under these
transformations

ul in"O,u) + c|in'ducl + dlin"0,d] + s|iv" Dy,
+upiv O, up + chin* O,k + diin' 0, dg + spiv O,sk
=U]iv*d, U] + D] iv*9, D] + Ugin*d, Ug + Driy"0,Dg
=U, AL in" 8, Al Uy + Dy BLin"9,B] Dy
+ UrAgiv"d, A Ug + DrBriy"d,B}:Dr
=ULin*0, UL + Dpin" 0, Dy + Urin*9,,Ug + Driv*0,,Dr.
@ Similarly, for the electromagnetic interactions

2, - . 1 - _
(5 (", + clret) = 5(drdf + sl +L = R
2
_(§

2 - 1
:%mmwﬂm—gm&wquwiaR

- 1 -
Uy Uy = 301" DAL+ L= R

2 - 1 -
I(g UL’}/# U, — gDL’y“DL)AH +L— R



@ Notice that invariance holds because A, has the same
coupling to all type-u quarks and same coupling to all type-d
quarks.

@ The coupling of Z° to quarks also satisfy these requirements.
Neutral currents are also invariant.

@ For the charged currents

Lep = \[ [(ujy"d] + c[y"s sW, + (djv*up + s,/ e )W, |
\%[ VDLW, + Dy Uy W, |
% { LA BI DLW + DLBLWA{UW;}
% [0 VAFDLW + D Vi uw; ]
=& [a (Yo V) (%) wi+ e
g

=% [(VugTiy"de + Vst sy + Vea Gy di + Veséiy*st)W,E + h.c]



@ The matrix V = ALBZ is a unitary matrix:
Wi = A B[BAl = A Al =1.

@ Under quarks fields redefinition by a phase g; — e/®ig;, all
other terms in the Lagrangian are invariant but

Vud7 Vus Vude_i(¢“_¢d)7 Vuse_i(¢u_¢s)
— : .
VCd7 VCS Vcde_’(¢c_¢d)’ Vcse_’(¢c_¢s)

@ Phases of the Vj; elements can be removed by an appropriate
field redefinition leaving an orthogonal matrix

Vv cosf.,sin 6,
—sin 6, cos b,
@ Cabibbo mixing is due to the dissalingnement between weak
eigenstates and mass eigenstates.



Cabibbo angle and Charm quark: GIM suppression

o Consequences for KO — putpu™

cosO. Wi B —sinf. Wy -
Y d 1
KO u Vp KO ) c Vp
c + g +
sin 6. W/jr a cos le a
M, = G,%- sin 6. cos 0. M, ~ —G,% sin 0. cos 0.

@ We can understand the small decay width from strong
cancellations of these diagrams due to the Cabibbo matrix.

@ The €c(3096) meson discovered in 1974 by two independent
Collaborations.: SLAC (¢) and BNL (J); today known as J /4.

e Kobayashi-Maskawa (1973): CP violation observed in Kaon
decays requires a phase in the Cabibbo matrix.

@ The only possibility is that another generation of quarks exists.



Three generations: Cabibbo-Kobayashi-Maskawa matrix.

o A new quark (b) discovered at FERMILAB in 1977 in the bb
system named T(9,41GeV).

@ Its weak partner (t) was discovered at FERMILAB in 1995
with a mass m; = 175GeV.

@ There are three generations of quark weak eigenstates:

1L — / ) 2L — / ’ 3L — /
d/, S/ b/,

@ A similar analysis yields the unitary 3 x 3 CKM matrix

g
V2

g Vud 3 Vus; Vub dL
= ﬁ (LTLa CL, t_l_) Ved, Ves, Vb ’Y“ S| VV: + h.c,
th7 VtS7 th bL

Loy = [OLVA* DLW+ DLVigruw, |

| IS



@ A 3 X 3 unitary matrix has only 9 real free parameters. Recall
U=e® with G'=6G.

@ There are six phases in the quark field redefinitions:
Vjj — e (%) ;. Only five differences ¢; — ¢; are
independent.

o We are left with 9 — 5 = 4 free parameters: 3 rotation angles
and a phase.

@ Many alternative parametrizations. CKM original one is
V = R23I5R13/5TR12, with Rj; rotation matrices and
Is = Diag (1,1, e™®). Explicitly
1,0,0 13,0, sp3e™7 23, 523, 0
V=1 0, c3,53 0,1,0 —23,€23,0
0,—s3,c23) \—s13¢”,0, 23 0,0,1



Viuds Vs, Vub C12€13, 512€13, size”’
_ i i
Veds Ves, Ve | = | —513C23 — croso3cize’™,  ciacos — sios3s13€’®,  sp3ci3
is is
Vids Vis, Vb 512523 — C12C3513€'%,  —C12503 — S12023513€"°,  3C13

@ All these parameters have been measured.

@ The phase ¢ induces CP violation: Neutral meson systems are
actually admixtures of states with well defined CP (QCD
eigenstates).

Vcd VVN_ Vies
d S
KO c c RO

* *
Vcs Vvlj_ Vcd

@ Plenty of physics here we have no time to discuss.



