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1
THE STANDARD MODEL OF ELEMENTARY PARTICLES

Abstract

It is first reviewed how the concepts of a QFT and of local gauge invariance

naturally arise, before they are applied to the electroweak model of leptons.

This model is then extended to include quarks and the strong interaction, fam-

ily replication and quark mixing, CP violation, as well as neutrino mass and

mixing. Experimental tests, the determination of fundamental parameters,

constraints on and limitations of the minimal model and ideas that go beyond

it are also covered.

1.1
Introduction

All known phenomena in the physical world are aspects of only four basic

forces: gravity, electromagnetism, the strong force, and the weak force. While

these forces appear to have very different characters, all of them are based

on quantum field theories (QFTs) exhibiting some form of local gauge sym-

metry. Although the historical development was different, with hindsight

local gauge invariance is now seen not as a fundamental principle, but as a

consequence of the more basic principles of Lorentz invariance and cluster

decomposition, as well as the axioms of quantum mechanics. The following

Section 1.2 first reviews how the concepts of a QFT and of local gauge sym-

metry naturally arise before they are applied to the prototype electroweak

model of electrons, e−, positrons, e+, and electron-neutrinos, νe. Section 1.3

discusses a series of extensions of this model to include quarks and the strong

interaction, family replication and quark mixing, and CP violation. Experi-

mental tests and constraints on the Standard Model (SM) are the subject of

Section 1.4. Finally, the concluding Section 1.5 describes limitations of the

minimal model and goes beyond Section 1.3 to incorporate neutrino mass and
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mixing. It also discusses accidental symmetries and their possible violation

by non-renormalizable corrections.

1.2
Principles and Theoretical Foundations of the Standard Mod el

Rather than reviewing how the SM emerged historically as the correct theory

of weak and electromagnetic interactions we first motivate the relevance of

QFTs in general (Section 1.2.1) and gauge theories in particular (Section 1.2.2),

before specializing to the electroweak gauge theory in Section 1.2.3. Key fea-

tures like non-Abelian gauge symmetry, spontaneous symmetry breaking and

the Higgs mechanism, renormalizability, and anomaly cancellation in chiral

gauge theories are covered in turn.

1.2.1
Quantum Field Theories

The mathematical framework to study relativistic particles and their interac-

tions is provided by QFTs. A particle can be defined as an irreducible unitary

representation (irrep) of the inhomogeneous Lorentz group (Poincaré group),

which is characterized (classified) by its mass,m, and either its spin (the eigen-

value of the square of the angular momentum operator, ~J) or in the massless

case its helicity1, h (the eigenvalue of the third component, J3, of~J). It is conve-

nient to introduce quantummechanical operators, a† and a, respectively creat-

ing and annihilating particles of a particular species with a specific relativistic

four-momentum (energy-momentum) and spin (including its direction). This

serves to satisfy (also in non-relativistic theories) the general scientific require-

ment that distant experiments should yield independent results (locality), i.e.,

quantummechanical probabilities factorize (cluster decomposition). Themost

general Hamiltonian is then a sum of products of any number of a† and a op-

erators, which are recalled to be defined in momentum space.

However, a relativistic theory requires in a addition to particles transform-

ing according to representations of the Poincaré group also Lorentz-covariant

scattering amplitudes (S-matrix). Invariance under Lorentz transformations

(boosts) presents an obstacle, because (according to Noether’s theorem) there

must be a conserved vector related to them, but (unlike linear and angularmo-

mentum operators) boost generators fail to commute with the Hamiltonian.

This complication introduces an additional condition (with no counterpart in

1) In contrast to the massive case, the commu-
tator algebra of symmetry generators (Lie
algebra) does not restrict the possible (real)

eigenvalues of J3, but there is a topological
restriction allowing only half-integer of
integer values of h.
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non-relativistic theories) which often takes the form of a causality require-

ment, i.e., Hamiltonian densities at space-like separation ought to commute.

The important point is that causality conditions are expressed in configuration

(position) space.

Therefore one integrates the creation and annihilation operators over all

spatial momenta2 ~p (Fourier transformation),

φl(x) =

∫

d3p

(2π)3/2
1

√

2p0
(ul a~p e

−ipx + vl a
†
~p e

ipx) (1.1)

yielding functions of spacetime with a set of discrete Lorentz and spinor in-

dices (collectively called l) giving rise to finite-dimensional non-unitary (un-

less a Lorentz scalar) and in general reducible representations of the homo-

geneous Lorentz group. The Fourier transforms (1.1) are the quantum fields.

The Hamiltonian is now a sum of products of quantum fields (and their Her-

mitian adjoints) and one can construct Lorentz scalars in much the same way

as one constructs rotational scalars by the use of Clebsch-Gordon coefficients.

The causality condition on the Hamiltonian translates into a similar com-

mutation relation (or anticommutation relation for fermions) for fields and

this will in turn impose constraints on the coefficients, ul and vl . In the course

of solving these constraints one encounters the fundamental theorems of QFT:

field equations: Every free field must satisfy the second-order differential

wave equation, (∂µ∂µ + m2)φl(x) = 0 (Klein-Gordon equation), and

many fields must obey other first-order differential equations or alge-

braic constraint equations, as well.

antiparticles: Antiparticles (1) exist for any particle species (not just for spin-

1/2 fermions as in the Dirac formalism) with an additive conserved

quantum number (e.g., electric charge, Q).

spin-statistics connection: Fields describing particles with (half)-integer

spin are (fermions) bosons.

CPT theorem: AnyQFT is invariant under the combined operations of charge

(particle–antiparticle) conjugation (C), parity (space) reflexion (P), and

time reversal (T).

2) p0 =
√

m2 + ~p2 is the particle energy; x0
appearing in px ≡ p0x0 − ~p~x denotes time
multiplied by the speed of light.
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1.2.2
Local Gauge Symmetries

In some cases it is impossible to find any solution to the constraints on the

ul and vl . In particular, no four-vector field, Aµ, can be constructed from the

annihilation and creation operators for a particle of helicity ±1 and m = 0

(2). Of course, one might use some other Lorentz representation, such as an

antisymmetric tensor field, Bµν, which does allow a solution. However, the in-

teractions in such a theory will have a faster fall-off at large distances than the

inverse-square law of the electrostatic Coulomb force. Such interactions may

well exist in nature, but they would be strongly suppressed relative to inverse-

square law interactions. But while it may suffice to have a covariantly trans-

forming four-vector field, Aµ, to construct a Lorentz-invariant theory, this is

not actually necessary. Indeed, under a general homogeneous Lorentz trans-

formation, Λ, one finds,

U(Λ)Aµ(x)U−1(Λ) = ΛνµAν(x) + ∂µΩ(x), (1.2)

i.e., the Aµ in this case transforms covariantly up to an extra term, where Ω(x)

is a linear combination of a† and a operators. Therefore, if for arbitrary func-

tions, ω(x), we require invariance under local (spacetime-dependent) “gauge”

transformations of the form,

Aµ(x) → Aµ(x) − ∂µω(x), (1.3)

then the failure of Aµ to transform covariantly would be immaterial. Thus, lo-

cal gauge invariance provides us with an additional option to construct long-

range forces mediated by particles of h = ±1 and m = 0, and (if present)

we should expect gauge-invariant theories to play a dominant role at large

distances. This is precisely what is observed and the electromagnetic, strong,

and weak forces, are all gauge theories invariant under the replacement (1.3).

This discussion generalizes straightforwardly to the case of gravity. No

symmetric rank-two tensor field, hµν, can be constructed from the annihila-

tion and creation operators for a particle of h = ±2 and m = 0 (2). In order to

construct an inverse-square law (Newton’s law) one still needs to work with

hµν, where here the failure to transform covariantly is cured by requiring in-

variance under general coordinate transformations as in the General Theory

of Relativity (3) generalizing the local gauge transformation (1.3).

The mathematics of all this generalizes further to massless particles of

higher helicities h > 2. Now, Noether’s theorem implies that conserved quan-

tities must be associated with these transformations, which are electric charge

(and generalizations thereof) for gauge theories and energy-momentum con-

servation in the case of gravity. There would be associated conserved quan-

tities for the case h > 2, but the abundance of conservation laws would
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rule out the possibility of non-trivial scattering processes of any kind. Thus,

the physics of this does not generalize beyond gravity. It is not yet known,

whether the only other possible case, h = ±3/2, is realized in nature3. If it

is, the corresponding transformations generalizing the local gauge transfor-

mation (1.3) are the local “supersymmetry” transformations. Supersymmetry

(4; 5) is an active subfield of elementary particle physics and among the lead-

ing candidates of possible physics that may modify the SM at higher energies.

The historical development was, of course, rather different. The theory of

electromagnetism (6) was not constructed from Lorentz and local gauge in-

variance but rather gave rise to these concepts (7).

1.2.3
Gauge Group of Electroweak Interaction

The gauge symmetry must and does (8) persist after the field Aµ is cou-

pled to matter. In quantum electrodynamics (QED) one therefore extends

the gauge transformation (1.3) to electrons and positrons to undergo the lo-

cal U(1) (phase) transformation (e is the electromagnetic coupling constant),

Ψ(x) → e±ieQω(x)Ψ(x). (1.4)

In the minimal electroweak theory one assumes that the electron combines

with the electron-neutrino to form a doublet, extending the Abelian U(1)

gauge symmetry of QED to some (in general) non-Abelian symmetry group.

In non-Abelian gauge theories particles can be transformed into other kinds

of particle, making them suitable candidates for describing the weak interac-

tion that can transform, e.g., electrons into neutrinos, or neutrons into protons.

Positivity of quantum mechanical probabilities implies that the associated Lie

algebra is the direct sum of commuting compact simple andU(1) subalgebras.

These have been classified4 by Cartan (10), leaving only a few possibilities.

To see what these are, a unique feature of the weak interaction (not shared

by the other known forces) must now be mentioned, namely that electroweak

gauge transformations act distinctly on left- and right-handed particles (chi-

rality). This possibility arises if one postulates invariance under proper

Lorentz transformations only (i.e., excluding parity reflections) with respect to

which left- and right-handed particles form separate irreps. There is presently

no piece of experimental evidence which would incontrovertible require the

existence of a right-handed neutrino and it is excluded from the minimal the-

ory. And since right-handed particles are not independent from left-handed

antiparticles, we may restrict our attention to the left-handed triplet of fields,

3) The cases h = 0 and h = ±1/2 do not present the kind of complica-
tions discussed here.

4) For an extensive discussion with emphasis on the application to
particle physics, see Slansky (9).
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(νe, e
−, e+)L, with the understanding that the physics of right-handed particles

and antiparticles is determined in terms of the left-handed ones.

Now the largest possible symmetry group that may act on this triplet is

U(3) = SU(3)×U(1), but such a theory would imply lepton number violation

at rates that are in conflict with observation. The largest possible subgroup of

U(3) consistent with lepton number is U(2)L × U(1)R = SU(2)L × U(1)L ×
U(1)R with SU(2)L (isospin) acting non-trivially on the doublet of fields,

(νe, e
−). The diagonal linear combination of U(1)L and U(1)R would give rise

to a long-range force (unless spontaneously broken) coupled to lepton num-

ber, but experiments provide no evidence in its favor and it is dropped. The

gauge group for this leptonic model (11; 12) is then,

G = SU(2)L ×U(1)Y, (1.5)

with the remaining combination, U(1)Y, coupling to “hypercharge”, Y. The

hypercharge assignment must reproduce the observed electric charges, so that

(in an appropriate normalization),

Y ≡ Q− T3, (1.6)

where T3 generates the U(1) subgroup of SU(2)L. T3 must be traceless for

each irrep, and one can take T3 = diag(1/2,−1/2) (T3 = 0) and consequently

Y = −1/2 (Y = +1) when acting on the doublet (singlet).

1.2.4
Gauge Bosons

Local gauge invariance requires vector bosons to transform in the defining

(adjoint) representation of the gauge group, i.e., there must be precisely one

gauge boson for each group generator. Thus, there is an (iso)triplet, ~Wµ, trans-

forming under SU(2)L, and an isosinglet, Bµ, for hypercharge. The linear com-

binations with definite mass and electric charge (shown as superscript) are,

W±
µ =

1√
2
(W1

µ ∓ iW2
µ), (1.7)

Z0
µ = cos θWW3

µ − sin θWBµ, (1.8)

Aµ = sin θWW3
µ + cos θWBµ, (1.9)

where the weak mixing angle, θW , is defined so that Aµ can be identified

with the photon, i.e., it couples to Q and describes the electromagnetic cur-

rent. Similarly, the W± bosons will produce charged current processes, such

as observed in radioactive β decays, and the doublet-singlet structure of the

SM reproduces the vector minus axial-vector (V − A) law of the weak inter-

action. On the other hand, at the time when the SM was under construction
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(11; 12) no process indicating the presence of the Z0 boson was known, and

the associated neutral current is a genuine prediction of the model. Denoting

the gauge coupling constants for SU(2)L and U(1)Y, respectively, by g and g′,
one finds the relations,

e = g sin θW = g′ cos θW =
gg′

√

g2 + g′2
. (1.10)

An important property of non-Abelian gauge theories (13) (not shared by

Abelian ones) is the appearance of non-linear terms in the Lagrangian density,

L = −1

4

(

∂µ ~Wν − ∂ν ~Wµ − g~Wµ × ~Wν

)2
− 1

4

(

∂µBν − ∂νBµ
)2

. (1.11)

This implies the existence and precise form and strength of triple and quartic

gauge boson self-interaction vertices.

The gauge-invariant interactions of vector bosons with leptons (and other

spin-1/2 and spin-0 matter particles) are implemented by replacing the ordi-

nary derivatives acting on the matter fields by gauge-covariant derivatives,

Dµ = ∂µ + ig~T~Wµ + ig′YBµ. (1.12)

1.2.5
Spontaneous Symmetry Breaking

If the short-range weak force is to be described by the W± and Z0 bosons

these would have to be massive. Simply adding a mass term to the La-

grangian (1.11) would break local gauge invariance which (as discussed) is

unacceptable. This is a very severe problem which touches upon the basic

principles of QFTs as reviewed in Section 1.2.1. Indeed, a massless vector

boson has only one degree of freedom (d.o.f.) which is characterized by its

helicity, h, and which cannot be altered by a proper Lorentz transformation5.

On the other hand, a massive vector boson is characterized by the three spin

states of an ordinary spatial vector.

The solution to this problem involves the phenomenon usually called spon-

taneous symmetry breaking (SSB), although the symmetry of the Lagrangian

remains fully intact. But the lowest energy (vacuum) state of the theory is

degenerate, with various possible ground states related by the symmetry of

the Lagrangian. Whichever is the actual vacuum state and whatever deter-

mines it, the physical consequences will be indistinguishable because of the

symmetry but the latter may be obscured or entirely hidden.

The SSB idea applied to continuous, global symmetries in QFTs (i.e., exclud-

ing local gauge symmetries) reveals the existence of a massless spin-0 field

5) To reach the second d.o.f. characterized by −h one needs to invoke a
parity transformation.
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(Nambu-Goldstone boson) for each broken symmetry generator (14; 15). This

can be proved (16) in general (Goldstone theorem).

For example, consider a doublet of complex scalar fields,

Φ(x) =
1√
2

(

φ1(x) + iφ2(x)

φ3(x) + iφ4(x)

)

, (1.13)

with φi = φ†
i and with Lagrangian,

LΦ = ∂µΦ†∂µΦ −m2
ΦΦ†Φ − 1

2λ2(Φ†Φ)2

= 1
2∂µφi∂

µφi − 1
2m

2
Φφiφi − 1

8λ2(φiφi)
2,

(1.14)

where here and in the following summation over i is understood. LΦ is man-

ifestly invariant under continuous SO(4) = SU(2) × SU(2) rotations in the

space spanned by the φi. The minimum energy state receives no contribution

from the kinetic energy (the first term in LΦ). Form
2
Φ > 0, the minimum of the

potential, V (the negative of the last two terms in LΦ), is reached for vacuum

expectation values (VEVs) 〈φi〉 = 0, which define a unique and trivially SO(4)

symmetric vacuum. For m2
Φ < 0, however, the ground state condition is

|〈Φ〉| =

√

−m2
Φ

λ2
≡ v√

2
, (1.15)

which has many solutions and none of them possesses SO(4) symmetry6. We

may choose, 〈φi〉 = 0 for i = 1, 2, 4 and 〈φ3〉 = v. Or we define a new field

variable, η ≡ φ3 − v so that 〈η〉 = 0, and write instead,

Φ(x) =
1√
2

(

φ1(x) + iφ2(x)

v + η(x) + iφ4(x)

)

. (1.16)

The potential now reads,

V = −λ2v4

8
+

λ2v2

2
η2 +

λ2v

2
ηφiφi +

λ2

8
(φiφi)

2, (1.17)

showing a mass term for η (mη = λv), while the φi are massless in accord with

the Goldstone theorem.

6) One may object that there are non-zero
matrix elements of the Hamiltonian, H,
between different such individual vacuum
solutions and that the linear superposi-
tions which one must take to diagonalize
H will then be symmetry eigenstates (in-
cluding the lowest energy state). But for
macroscopic systems these off-diagonal
matrix elements are much smaller (and

in infinite volume theories like QFTs they
even vanish) than any imperceptibly small
symmetry violating perturbation which
would diagonalize H in the individual ba-
sis. Moreover, vacuum states should also
satisfy the principle of cluster decomposi-
tion (see Section 1.2.1) and one can show
that general linear combinations do not.
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1.2.6
Higgs Mechanism

If the field (1.16) is assumed to transform non-trivially under SU(2) × U(1)

gauge transformations, one can arrange for a particular transformation U to

pass to a gauge (unitary gauge) such that,

UΦ(x) =
1√
2

(

0

v + H(x)

)

, (1.18)

i.e., φ1(x), φ2(x), and φ4(x) can be eliminated. If we apply this to the SU(2)L ×
U(1)Y electroweak gauge theory, we must replace the derivatives in Eq. (1.14)

by the covariant derivatives (1.12), which introduces extra gauge boson de-

pendent terms. The bilinear ones of those are

∆L = −1

8
v2

[

g2(W1
µ)2 + g2(W2

µ)2 + (g′Bµ − gW3
µ)2

]

, (1.19)

showing that, as anticipated, theW±
µ (1.7) and Z0

µ (1.8) bosons are indeedmass

eigenstates, with mass, respectively, given by

MW =
1

2
gv, MZ =

1

2

√

g2 + g′2v, (1.20)

while the photon (1.9) remains exactly massless. This shows how the puz-

zling mismatch of d.o.f. counting mentioned at the beginning of Section 1.2.5

is rectified: the extra (longitudinal) d.o.f. carried by a massive gauge boson is

provided by a scalar d.o.f. of what in the context of the breaking of the cor-

responding global symmetry would have been a Goldstone boson (would-be

Goldstone boson). This is the Higgs mechanism (17; 18; 19) and the d.o.f. rep-

resented by η is the yet to be discoveredHiggs boson, H, with mass, MH = λv.

The covariant derivatives will also induce trilinear and quatrilinear terms

producing couplings of two gauge bosons to respectively, one and two Higgs

bosons. These are fixed in terms of the gauge couplings g and g′.
We have chosen an isodoublet of complex scalars, but the Higgs mechanism

would also work with other non-trivial representations. But if in the course

of SSB the electron is to acquire a mass term, as well, the only renormalizable

possibility (see the following Section 1.2.7) is indeed a non-derivatively cou-

pled SU(2)L doublet (which can combine with the lepton doublet to form a

singlet) with hypercharge Y = −1/2 (to cancel the hypercharges of the elec-

tron and the positron). This allows to add to the theory a Yukawa term (20),

LY = −
√
2λe(νe, e)LΦeR +H.c., (1.21)

where the overline notation is introduced to form a Lorentz-invariant scalar

product for fermions and adding the Hermitian conjugate assures a real val-

ued Lagrangian. If again the Higgs field, Φ(x), is replaced by its VEV (1.15) a



10 1 THE STANDARD MODEL OF ELEMENTARY PARTICLES

mass term for the electron arises,

me = λev. (1.22)

1.2.7
Infinities

Quantum mechanical amplitudes for physical processes can be computed in

an expansion in powers of the coupling constants (perturbation theory) and

are given by a sum of Feynman diagrams (21) translating into concrete mathe-

matical expressions. If one attempts to calculate higher order radiative correc-

tions to these processes (containing closed particle loops) one frequently en-

counters divergent expressions. One can “renormalize” a theory if the infini-

ties match a set of infinite counterterms that one may add to the Lagrangian

density defining the theory. In this case one can absorb all infinities into re-

defined coupling constants, masses, and fields, provided one works with the

most general Lagrangian and the complete set of counterterms allowed by the

assumed symmetries.

The number of counterterms may in principle be infinite. There is a stricter

sense of renormalizability which refers to field theories that need only a finite

number of counterterms and which (for historical reasons) are the ones actu-

ally called renormalizable. The coefficients of the counterterms in this case are

restricted to be either dimensionless7 or their dimension is a positive power

of mass (power counting renormalizability). In gauge theories one still needs

to demonstrate that gauge invariance constrains the infinities in the same way

as the interactions. This has been achieved first for QED (22) and later for

non-Abelian theories (23) including those with spontaneously broken gauge

symmetries (24) showing that the SM is renormalizable in the stricter sense.

There is another class of infinities (25; 26) which can arise and for which

there are no counterterms to absorb them. They appear in Feynman dia-

grams containing a closed spin-1/2 fermion triangle with gauge bosons at-

tached (possibly including gravitons) of which at least one couples chirally

— just like the SUL × U(1)Y gauge bosons in the SM. Such diagrams can be

interpreted as corrections to the three-gauge-boson vertices. But since there

are no corresponding divergences in the corrections to the four-gauge-boson

vertices or to the vertices generated by the covariant derivatives, the subtle

structure required by gauge invariance (e.g., in Eq. (1.11)) breaks down. This

phenomenon of symmetry violation by quantum effects (anomaly) does not

7) As is customary among elementary particle physicists, we are using
physical units in which, by definition, the fundamental values of
the speed of light, c, and of Planck’s constant, h/(2π), are exactly
equal to one. The dimensions of mass, energy, linear momentum,
and inverse length are then the same.
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necessarily spoil the mathematical consistency of the theory (see Section 1.5.3

for an example), but chiral gauge anomalies of the type encountered here do.

It is perhaps surprising that symmetries of the action can be violated by the

interactions derived from this very same action. Fujikawa (27) has given an in-

terpretation of chiral anomalies which reveals their fundamental nature. In the

spacetime approach (28) to quantummechanics, amplitudes are given as inte-

grals over all possible path histories (path integral formulation) weighted by a

complex phase factor given in terms of the action. The chiral anomaly is here

seen as the Jacobian determinant (which can be written as an extra phase fac-

tor) arising from a change of integration variables of the form of a local gauge

transformation. The non-trivial Jacobian by itself would not affect the pertur-

bation theory because it is field-independent and would pose no problem. But

it is infinite and needs regularization in the process of which (gauge) field-

dependence is introduced. For this reason, in addition to a gauge-invariant

action one also has to require a gauge-invariant path integral measure (more

strictly, only the combination of the two needs to be gauge-invariant).

The model of leptons (11; 12) described in this Section is plagued by chiral

gauge anomalies and is therefore— as it stands— inconsistent. However, one

may add additional fermionic d.o.f. to the model that may precisely cancel the

anomalies. These d.o.f. are provided by the quarks discussed in Section 1.3.2.

1.3
The Standard Theory

Section 1.3.1 extends the model to include the muon and tau sectors whose

existence is not explained in the SM but which incidentally help to determine

the basic coupling parameters, respectively, of the weak and strong interac-

tions, with great precision. The quark sector and the modern theory of the

strong interaction (QCD) are added in Section 1.3.2, completing the particle

content of the SM. Sections 1.3.3 and 1.3.4 are dedicated to quark mixing and

CP violation, respectively.

1.3.1
Lepton Replication and Muon Decay

Besides Yukawa interactions as, e.g., in LY, the leptonic model has only four

adjustable parameters, namely, the gauge couplings, g and g′, as well as from

the Higgs Lagrangian (1.14) the Higgs-self coupling, λ, and the only funda-

mental parameter with dimension of mass in this theory, mΦ. The combi-

nation of the latter two in Eq. (1.15) can be determined experimentally with

very good accuracy. This is because of the existence of the muon which forms

(with its antiparticle and the left-handed muon-neutrino, νµ) the same left-



12 1 THE STANDARD MODEL OF ELEMENTARY PARTICLES

handed SU(2)L doublet and right-handed singlet structure with the same

hypercharges as the electron, providing an exact duplication except for an

approximately 200 times larger value for the corresponding Yukawa cou-

pling (1.21), λµ as compared to λe. Thus, the µ− is much heavier and can

decay into a νµ, e
−, and νe with an amplitude8 which to good approximation

is proportional to g2/M2
W . According to the first Eq. (1.20) this determines the

Higgs VEV,

v =
2MW

g
=

√

1√
2GF

= 246.22 GeV, (1.23)

where GF = 1.166367± 0.000005× 10−5 GeV−2 (4 parts per million precision),

is the four-fermion coupling constant appearing in the original Fermi theory

(29) of the weak interaction.

It should be mentioned that the extraction of fundamental parameters to

such high precision requires the calculation of higher order corrections. These

are often difficult and lengthy computations but are feasible within renormal-

izable field theories. E.g., in the case of the Fermi constant one needs the muon

lifetime formula to forth-order (two-loop) precision (30; 31).

The relations (1.10) allow to fix another combination of couplings since the

QED fine structure constant,

α ≡ e2

4π
=

1

137.0359997± 0.0000001
, (1.24)

is known to within 700 parts per trillion. It is extracted from the anomalous

magnetic moment of the electron (see Section 1.4.2) and is based on an eighth-

order (four-loop) calculation (32).

The gauge boson masses (1.20) are then (to first order) determined by the

weak mixing angle alone,

MW =

√

4πα(MZ)

2 sin θW
v ≈ 38.59 GeV

sin θW
≈ 86± 7 GeV, (1.25)

MZ =

√

4πα(MZ)

2 sin θW cos θW
v ≈ 77.18 GeV

sin 2θW
≈ 96± 6 GeV. (1.26)

These equations use the value, α−1(MZ) ≈ 127.9, appropriate for high-energy

(weak-scale) observables instead of the low energy value in Eq. (1.24). This is

because leading radiative corrections — those enhanced by large logarithms

8) The Lagrangian (1.21) and the gauge interactions are such that the
total number of e− and νe minus e+ and νe entering and leaving any
Feynman diagram must be the same (electron number conserva-
tion) and likewise for muons. This is why an antineutrino is emitted
together with an electron.



1.3 The Standard Theory 13

of the form lnMZ/m f , where m f is a fermion mass — have been taken into

account. Effectively, these logarithms lead to the concept of the energy scale

(µ) dependence9 (running) of the coupling constants (34; 35), described by the

Callan-Symanzik β-function (36; 37),

µ2 d

dµ2
α(µ) = β(µ). (1.27)

Note, that α grows with µ (screening), and so β > 0. The last step in the

relations (1.25) and (1.26) shows the predictions for the value sin2 θW = 0.20±
0.03 obtained by the 1978 experiment (38) in electron–deuteron fixed-target

scattering (see Section 1.4.2). The W± (39; 40) and Z0 (41; 42) bosons have

been discovered in 1983 in proton–antiproton collisions at the Super Proton

Synchrotron (SPS) at the EuropeanOrganization for Nuclear Research (CERN)

near Geneva, Switzerland. The reconstructed masses, MW ∼ 80 GeV and

MZ ∼ 92GeV, were in perfect agreementwith the predictions (1.25) and (1.26).

The most general amplitude for muon decay (43) is described by 19 real

parameters (Michel parameters) which reduce to 6 parameters if the outgoing

neutrinos are not observed. The Michel parameters have been used to confirm

the V − A structure of the SM. The muon sector also played a crucial role in

the first observation of a neutral current process. The 1973 discovery (44) at

CERN was based on a single event in νµe
− elastic scattering.

The lepton sector is completed by yet another replication, comprised of the

τ± and the ντ. The τ± is about 17 times heavier than the µ±, and is the only

known lepton heavy enough to decay into hadrons, providing a valuable lab-

oratory for detailed and quantitative studies of the strong interaction (45).

1.3.2
Quarks and Quantum Chromodynamics

It was stressed in Section 1.2.7 that the leptonic model by itself has a gauge

anomaly which can be cured by adding additional fermions (quarks). As can

be seen from Eq. (1.6), a left-handed quark doublet (u, d) with hypercharge

Y = +1/6 and two antiquark singlets u (Y = −2/3) and d (Y = +1/3) cor-

respond to Qu = +2/3 and Qd = −1/3. These give a contribution to the

pure (cubic) hypercharge anomaly of Y3 = NC(2− 64 + 8)/216 = −NC/4. If

one chooses NC = 3 (the number of “colors”) this cancels the contribution,

Y3 = −1/4 + 1 = 3/4, from electron-type leptons. Doublets with other kinds

of quarks (flavors) (c, s) and (t, b) along with their antiquarks are needed to

9) There are various definitions arising from different calculational
(renormalization) schemes which differ by higher order terms. Val-
ues quoted here correspond to what is known as the modified mini-

mal subtraction (MS) scheme (33).
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cancel the anomaly contributions from the muon and tau sectors. Anomaly

cancellation for other gauge boson combinations can also be checked.

The color quantum number has never been observed directly and nei-

ther have been free quarks. Qualitatively this can be understood if one as-

sumes that there is another non-Abelian gauge interaction with gauge group

SU(3)C, which is acting on color triplets of quarks and color antitriplets of

antiquarks10, and if this new gauge interaction became stronger at large dis-

tances11 so that it would be too costly in energy to isolate a quark (confinement

hypothesis). For this, the β-function of quantum chromodynamics (QCD)

would have to be negative (antiscreening) in contrast to the case of QED (see

Section 1.3.1) and any other renormalizable QFT. Non-Abelian gauge theories

(if not coupled to too many matter fields) have indeed this property (47; 48).

The reason that the SU(3)C gauge bosons (the gluons) have not been ob-

served directly is then not thought to be that they are very massive, but rather

massless and confined into colorless hadrons (49; 50). The known hadrons are

quark–antiquark bound states (mesons) or bound states of either three quarks

or three antiquarks (baryons and antibaryons). Other possibilities such as

bound states of four quarks and an antiquark (pentaquarks) or purely glu-

onic states (glueballs) have been speculated about and in some cases their

mass predicted, but they have not yet been uncontroversially observed. Both

gluons and quarks can be indirectly observed in high-energy collisions as di-

rectionally clustered collections of hadrons (jets). For example, the gluon was

discovered (51; 52) in 1979 at the Positron Electron Tandem Ring Accelerator

(PETRA) at the German Electron Synchrotron (DESY) in Hamburg as planar

three jet events which could be interpreted as the radiation of a gluon by one

of the quarks (gluon Bremsstrahlung). This completes the elementary particle

spectrum of the SM which is summarized in the Table below.

By precisely measuring the total production rate of jet events one cannot

only determine NC (to which it is proportional to first order) but also

αs ≡
g2s
4π2

, (1.28)

where gs is the strong gauge coupling associated with SU(3)C and which en-

ters at second order. Examples for such measurements include hadron pro-

10) Triplets and antitriplets of SU(3) are com-
plex conjugates of each other and form
mathematically inequivalent irreps. The
only other gauge group in Cartan’s classi-
fication (10) with a three-dimensional irrep

(for NC = 3) is SU(2), but its irreps are
(pseudo)-real and therefore would give a
hadron spectrum different from what is
observed.

11) Conversely, it ought to become weaker
at short distances (asymptotic freedom)

in agreement with experiments in deep
inelastic electron–nucleon scattering (46).
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Standard Model Particles

multiplet spin SU(3)C SU(2)L U(1)Y

Higgs 0 1 2 −1/2

(νe, e
−)L (νµ, µ

−)L (ντ , τ
−)L 1/2 1 2 −1/2

e−R µ−
R τ−

R 1/2 1 1 − 1 plus
(u, d)L (c, s)L (t, b)L 1/2 3 2 +1/6 anti-
uR cR tR 1/2 3 1 +2/3 particles
dR sR bR 1/2 3 1 −1/3

gluons 1 8 1 0
~W 1 1 3 0
B 1 1 1 0

duction in e+e− annihilation at sufficiently high energy, the τ lepton lifetime,

and various Z0 decay observables (see Section 1.4.1).

QCD by itself individually conserves the number of quarks of each flavor

(minus the number of each antiflavor). Moreover, QCD perturbation theory

also conserves P and C invariance (just like QED), but (unlike in QED) these

are generally expected to be broken non-perturbatively (see Section 1.3.4).

1.3.3
Quark Mixing

When one adds to the u (up) and d (down) quarks of the first family the second

generation s (strange) and c (charm) quarks, then the Yukawa couplings (1.21)

become 2 × 2 matrices. These complex matrices can be brought to diagonal

form with real eigenvalues (the quark masses) by means of bi-unitary12 trans-

formations (changes of basis). The weak interaction, however, will not be di-

agonal in this new (mass) basis whenever the left-handed unitary transforma-

tion, Uu
L , acting on up- and charm quarks differs from Ud

L, acting on down-

and strange quarks. As a result, the linear combinations,

d′ = cos θcd + sin θcs, s′ = − sin θcd + cos θcs, (1.29)

of mass eigenstates d and s are the ones that actually form the SU(2)L dou-

blets with u and c, respectively. Here, θc is the so-called Cabibbo angle (53),

and the right-handed transformation matrices, Uu
R and Ud

R, have been used

to arrange that u′ = u and c′ = c remain unchanged. In the SM, Uu
R and

Ud
R have no observable effect which can be traced to the fact that there are

only left-handed SU(2)L doublets. Thus, in the quark sector there is a nu-

merically smaller Fermi constant, GF → GF cos
2 θc, effective than in the lepton

12) In general, different matrices are necessary for the left- and right-
handed quark fields. Each matrix must be unitary, U† = U−1, so that
the quark kinetic energy terms maintain their canonical forms.
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sector, with θc ≈ 13◦. Flavor changing charged current transitions between the

first two families such as kaon (light mesons containing an s quark) β decays,

K− → π0e−νe, are possible but suppressed by sin2 θc ≈ 0.05.

Flavor changing neutral current (FCNC) transitions, such as K0–K0 oscilla-

tions or K0 → µ+ + µ− decays, are also predicted. However, the contributions

from two full generations of quarks tend to cancel each other leaving only a

small residual effectwhich canmostly be attributed to the differences in quark

masses. Historically, this cancellation (GIM mechanism) was the basis for the

prediction (54) of the c quark and an estimate of its mass before the 1974 dis-

covery of the first c–c bound state (the J/Ψ) almost simultaneously at the Al-

ternating Gradient Synchrotron (AGS) at the BrookhavenNational Laboratory

(BNL) (55) and at the Stanford Positron Electron Accelerating Ring (SPEAR)

at the Stanford Linear Accelerator Center (SLAC) (56).

1.3.4
CP Violation

Upon inclusion of the t (top) and b (bottom) quarks, 3× 3 Yukawa (mass) ma-

trices and the possibility of CP violation arise (57). CP violation typically oc-

curs in the presence of complex phases leading to different quantummechan-

ical interference effects between charge-conjugate amplitudes. Many phases

in the Cabibbo-Kobayashi-Maskawa matrix (53; 57),

VCKM = Uu
LU

d
L

†
, (1.30)

can be removed by redefinitions. Indeed, no diagonal phase transformation

of the form UR = diag(α1, α2, α3), can affect the arrangements, u′ = u, c′ = c,

and t′ = t. Any of these (except for one overall phase) can be used to remove

phases from the mass matrices, eliminating five observable phases fromVCKM

(in the three generation case). Being defined as the product (1.30) of two uni-

tary matrices, VCKM is itself unitary, and since it is unconstrained otherwise it

has nine (real) parameters. Of these only four are then observable, which can

be interpreted as threemixing angles (generalizing θc) and one observable (CP

violating) phase, eiδ. The same counting reveals (N − 1)2 parameters for an N

generation VCKM of which (N − 1)(N − 2)/2 are complex phases. Therefore,

as long as eiδ 6= 1, the three generation SM predicts CP nonconservation in

the electroweak sector. Combining the fact that CP violation occurs for three

but not for two generations of quarks with the small observed values of VCKM

elements connecting the third with the other two (lighter) generations one ex-

pects rather small CP violating effects even for δ not very close to 0 or π. CP

violation has been observed in kaons and in mesons containing b-quarks. All

results can be understood in terms of a common value of the CKM phase δ.
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There is another source of CP (and P) violation from the QCD sector. A term

may be added to the QCD Lagrangian which in some sense extends the gauge

coupling to complex values, with an imaginary part proportional to a real pa-

rameter θ (QCD θ angle). It can bewritten as a total derivativewhich renders it

harmless in QCD perturbation theory because it will not modify the Feynman

rules13. Even non-perturbatively it may be absorbed by a chiral phase redefi-

nition of the quark fields but at the expense of having to allow complex quark

masses, modifying the phase counting above. The QCD θ angle would give,

e.g., a contribution to the CP violating electric dipole moment of the neutron

which has not yet been observed. This implies a stringent bound, θ <∼ 10−10.

It is an open question why θ is so small (strong CP problem).

1.4
Experimental Tests

After the discoveries of the weak neutral current (44), the W± (39; 40) and Z0

(41; 42) bosons, and the observation (38) of parity violation in deep inelastic

electron–deuteron scattering (see Section 1.4.2), the SM was widely accepted

as the correct theory of electroweak interactions, at least to some first approx-

imation. High precision measurements were then needed to establish the SM

as a renormalizable field theory and at the level of quantum corrections. Since

the SU(2)L gauge coupling usually enters in the combination g2/4π2 ≈ 0.01,

one typically has to achieve relative accuracies of better than 1% in genuine

electroweak observables.

1.4.1
Z0 Pole Physics

Z0 bosons can be produced copiously in e+e− annihilation experiments if the

center of mass energy is tuned to MZ (Z resonance). The high statistics achiev-

able on the Z0 pole was exploited by the Large Electron Positron (LEP) collider

at CERN and the Stanford Linear Collider (SLC) at SLAC (Z factories). A joint

document (59) combines the results and accounts for common systematic and

theoretical uncertainties in the interpretation of the individual experiments.

The LEP program recorded about 17 million Z0 decays and included an en-

ergy scan around the Z0 pole. The fit to the Z0 resonance lineshape resulted

in a 23 parts per million determination of MZ = 91.1876± 0.0021 GeV. To-

gether with the fine structure constant (1.24) and the Fermi constant appear-

13) The fact that a total derivative term in the Lagrangian can still have
a non-trivial physical effect is best understood in the path integral
formulation. One points to the existence of extended spacetime-
dependent (topological) field configurations (such as the so-called
instantons) which one has to include (58).
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ing in Eq. (1.23) this fixes three of the four fundamental electroweak input

parameters mentioned in Section (1.3.1). Even though the Higgs boson has

not been discovered yet, the missing input parameter, MH , can be constrained

by a global fit to all electroweak precision data (see Section 1.4.3). In addition

to MZ, the Z0 lineshape scan also yielded 0.9 permille determinations of the

total Z0 decaywidth, ΓZ = 2.4952± 0.0023GeV, and the resonance peak cross-

section for hadronic final states, σhad = 41.541± 0.037 nb. The cross-sections

for specific quark or lepton flavors, f , are then expressed relative to σhad as

ratios, R f . The observables, ΓZ, σhad, and Rℓ (ℓ = e, µ, τ), serve as the theo-

retically cleanest determinations of αs. If one subtracts the partial Z0 decay

widths into hadrons and charged leptons from ΓZ one obtains the “invisible”

Z0 width, Γinv, which in the SM represents the decay width into neutrinos.

Conversely, by computing the SM decay width into one standard neutrino,

one can use the measured Γinv to extract the number of massless neutrinos,

Nν = 2.985± 0.009, which rules out further generations of fermions (unless

their properties are qualitatively different from the three known ones). By

measuring the cross-section asymmetry, AFB( f ), for fermions f going into

the forward hemisphere of the detectors relative to the backward direction

(forward-backward asymmetry), the LEP Collaborations obtained a number

of observables which are proportional to lepton-Z vector couplings, vℓ. Since

(to leading order) the vℓ are proportional to the combination 1− 4 sin2 θW and

sin2 θW ≈ 0.23 is numerically close to 1/4, these observables have an en-

hanced sensitivity to sin2 θW and allow permille level determinations. This

also applies to the final state τ polarization asymmetry, Apol(τ), a measure-

ment which included information from the angular distribution, as well.

The SLC operated with a 75% polarized e− beam and percent level po-

larimetry permitting competitive measurements of sin2 θW with a much

smaller number of approximately 600,000 Z0 bosons. This is because left-

right (polarization) asymmetries (ALR) are also proportional to vℓ, while being

much larger than leptonic LEP asymmetries (yielding better data statistics).

They are also cleaner (only counting of hadrons or leptons is required) than

the quark asymmetries at LEP which need to tag the flavors of heavy quarks

and distinguish quarks from antiquarks. The combination of measurements

of the weak mixing angle at Z0 pole energies yields,

sin2 θW(MZ) = 0.23124± 0.00017. (1.31)

The results obtained from the Z factories are in remarkable agreement with

the SM predictions. In particular, the decay properties of the Z0 boson and

its couplings to leptons and quarks have been verified at the sub-percent level

tightly constraining any possible physics beyond the SM. On the other hand,

direct contributions to the scattering amplitudes from outside the SM are sup-
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pressed relative to the resonating Z0 amplitude and are best studied away

from the Z0 pole.

One possibility is to upgrade the colliders to higher energies as was done

with LEP (LEP 2) which operated up to 209 GeV (60). Here one can study

directly the electroweak energy scale, but high precision measurements are

generally difficult due to small data samples. Nevertheless, various key mea-

surements were achieved, most notably the very precise measurement of

MW = 80.376 ± 0.033 GeV. Similarly, the proton–antiproton collider Teva-

tron at the Fermi National Accelerator Laboratory (FNAL) near Chicago is

producing collisions up to 2 TeV. It provided a comparable measurement of

MW = 80.429± 0.039 GeV (61; 62), and was also able to discover the very

massive t quark (63; 64) and to determine its mass, mt = 170.9 ± 1.8 GeV

(65). The Tevatron experiments are expected to increase their data samples

by another order of magnitude before the final shutdown of the collider. But

complementary measurements are also possible at much lower energies if suf-

ficient precision can be achieved (see the following Section 1.4.2).

1.4.2
Low Energy Measurements

The 1978 deep inelastic scattering (DIS) experiment (38) of polarized electrons

from deuterium at SLAC was crucial in establishing the SM. Rival models

based on different gauge groups or with different SU(2)L × U(1)Y irrep as-

signments could not simultaneously explain contemporary ν-scattering re-

sults or were altogether inconsistent with the observed parity nonconserva-

tion in eD-DIS. At energy (momentum transfer) scales Q of about 1 GeV the

parity violating interference term between the photon and the Z0 is sup-

pressed by Q2/M2
Z ∼ 10−4 relative to the parity conserving QED cross-

section. In other words, an asymmetry measurement of the order of 10−5

corresponds to a 10% determination of the Z0 mediated amplitude.

The same idea has later been applied (66) to e−e− (Møller) scattering at even

lower momentum transfer,Q2 = 0.026 GeV2. Just like at the Z0 pole the parity

violating asymmetry, APV , is here further suppressed by vℓ yielding a very

small APV = (−1.31± 0.17) × 10−7. Due to the enhanced sensitivity to the

weak mixing angle, this yields sin2 θW(Q) = 0.2397± 0.0013, the most precise

value away from the Z resonance. The central value is higher than the one in

Eq. (1.31) establishing that sin2 θW is a running parameter (see Figure 1.1) just

like the QED coupling α discussed in Section 1.3.1 and the QCD coupling αs.

The interference between photon and Z0 mediated amplitudes can also in-

duce mixing between opposite parity states in atoms. Atomic parity violation

(APV) has been seen in various heavy atoms where the effect is larger but it

must be enhanced further. For example, it can be isolated as a small modu-
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Fig. 1.1 The scale dependence of the weak mixing angle (67; 68) as
predicted in the SM, compared to various low energy measurements
and the Z0 pole value (1.31). At µ = MW , the β-function of sin2 θW
changes sign because only with the inclusion of the W± bosons above
MW does the electroweak theory become a non-Abelian gauge theory
with the characteristic antiscreening.

lation of the level mixing induced by an external electric field (Stark-mixing).

The most precise measurement has been obtained by a group in Boulder, CO,

in cesium (69) and may be interpreted as a precise measurement of sin2 θW
(see Figure 1.1). However, the interpretation requires a solid understanding

of the structure of many-electron atoms (70). For cesium the uncertainties as-

sociated with atomic wave functions are relatively small and comparable to

the experimental ones.

Since neutrinos are electrically neutral they are directly sensitive to the weak

interactions, but their cross-sections are proportional to G−2
F and very small.

DIS of neutrinos from nuclei have been measured to percent accuracies but

here the interpretation of the results is hampered by theoretical uncertainties

from the strong interaction. These can be reduced by considering ratios of

neutral and charged current cross-sections and by using nuclei with (approxi-

mately) equal numbers of protons and neutrons (isoscalars). If a high-intensity

and high-energy antineutrino beam is also available one can use the ratio of

differences of ν and ν cross-sections (Paschos-Wolfenstein ratio) reducing the

theoretical uncertainties even further (71). This was possible by studying neu-
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trinos produced at the Tevatron and resulted in themost precise determination

(72) of sin2 θW from ν-DIS dominating the world average shown in Figure 1.1.

By far the most precise observable testing the SM (as opposed to fixing one

of the input parameters) is the anomalous magnetic moment14 of the muon,

aµ. At the level of the impressive experimental precision achieved at BNL (74),

aµ ≡ gµ − 2

2
= (1165920.80± 0.63)× 10−9, (1.32)

receives non-negligible corrections from the weak interaction and is easily af-

fected by new physics contributions. The SM prediction (75) of aµ is not in-

consistent with Eq. (1.32), but there is a tantalizing difference at the level of

three standard deviations. Conclusions as to whether this deviation is from

new physics at higher energy scales must await further theoretical work be-

cause the interpretation of aµ is complicated by hadronic contributions enter-

ing at two-loop order (where it can be constrained by experimental data) and

at three-loop order (which are much smaller but very difficult to estimate).

1.4.3
Global Analysis

To fully exploit the information contained in the various experimental results

it is best to perform a simultaneous analysis of all data (76; 77; 78). Some of

the measurements used for such a study are shown in the following Table.

Standard Model Precision Tests

observable experimental value SM prediction pull deviation

ΓZ [GeV] 2.4952± 0.0023 2.4968± 0.0010 −0.7 −0.5
σhad [nb] 41.541± 0.037 41.466± 0.009 2.0 2.0

Rℓ 20.767± 0.025 20.758± 0.011 0.4 0.5
Rb 0.21629± 0.00066 0.21584 ± 0.00006 0.7 0.7
Rc 0.1721± 0.0030 0.17228 ± 0.00004 −0.1 −0.1

AFB(ℓ) 0.0171± 0.0010 0.01627 ± 0.00023 0.8 1.1
AFB(b) 0.0992± 0.0016 0.1033± 0.0007 −2.5 −2.0
AFB(c) 0.0707± 0.0035 0.0738± 0.0006 −0.9 −0.7
Apol(τ) 0.1465± 0.0033 0.1473± 0.0011 −0.2 0.1

ALR 0.1514± 0.0022 0.1473± 0.0011 1.9 2.4
MW [GeV] 80.398± 0.025 80.375± 0.015 1.4 1.7
mt [GeV] 170.9± 1.8 171.1± 1.9 −0.1 −0.8

The low energy data and other (less precise) observables15 are not shown but

14) The term anomalous is of historical origin and refers to quantum
corrections (73) to the lowest order magnetic moment g of massive
particles with spin.

15) For these and many other measurements and tests, including the
determination of fermion masses, the parameters in VCKM, and lim-
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Fig. 1.2 One-standard-deviation (39.35%) uncertainties in MH as a
function of mt for various inputs, and the 90% confidence level (CL)
region allowed by all data. The 95% direct exclusion limit from LEP 2
(79) is also indicated.

included. The column denoted pull shows the deviation (normalized to the

total experimental plus theoretical uncertainty added in quadrature) of the

experimental values from the SM best fit with MH allowed as a free parameter,

while the deviation column refers to the SM best fit with MH = 117 GeV fixed.

The agreement is generally very good and there are no major discrepancies.

The global fit can be used to constrain the SM parameters including the

Higgs boson mass,

MH = 77+28
−22 GeV, (1.33)

the weak mixing angle, sin2 θW(MZ) = 0.23119± 0.00014, and the QCD cou-

pling, αs(MZ) = 0.1217± 0.0017. The constraints by group of observable in

the MH–mt plane are shown as contours in Figure 1.2. Good agreement is

observed except that the low energy data (driven mostly by the NuTeV (72)

result) tend to imply larger MH . Also, most of the 90% CL ellipse is excluded

by the Higgs boson searches at LEP 2, MH > 114.4 GeV (79), and indeed the

its on SM forbidden processes, see the Review of Particle Properties
(78). This reference also contains in depth reviews on many SM re-
lated topics and is updated biennially.
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one-standard-deviation range (1.33) is already ruled out. This may be due

to a statistical fluctuation or could be an early indication of loop contributions

from new particles beyond the SM affecting the precision observables. Includ-

ing the results of LEP 2 searches (which include a slight excess of candidate

Higgs boson events) in the analysis yields the 95% CL upper bound,

MH ≤ 167 GeV. (1.34)

Thus, if the SM is correct then the Higgs boson is not expected to be much

heavier than the massive gauge bosons, and may be producable at the Teva-

tron and should certainly be detected at the Large Hadron Collider (LHC).

The LHC is a soon to be inaugurated accelerator placed in the LEP tunnel at

CERNwhich will mostly study proton–proton collisions at very high (around

14 TeV) energies.

One can also perform a fit to the precision data alone, i.e., excluding the

direct mt from the Tevatron. The result, mt = 175+10
− 8 GeV, is in perfect agree-

ment with the direct determination and provides an impressive confirmation

of the SM at the level of radiative corrections.

1.5
Beyond the Minimal Model

Despite all its successes, the SM is widely believed to be correct only up to

small non-renormalizable (see Section 1.2.7) correction terms suppressed by

some high energy scale Λnew. This is because the mass parameter, mΦ, in

the Higgs potential generally receives large radiative corrections of the order

of Λnew, destabilizing the electroweak scale. Moreover, the gauge group, the

irreps, and the values of the input parameters are chosen in an ad hoc way to

conform with observation, but are not understood at any deeper level.

1.5.1
Accidental Symmetries and non-Renormalizable Correction s

Whatever the underlying theory beyond the SM that cures these problems

may be, at the electroweak scale one can organize it in an expansion in in-

verse powers of Λnew, where each term (operator) contains only SM fields

and where the unsuppressed (renormalizable) terms define the SM. The co-

efficients of the non-renormalizable operators are to be adjusted to reflect the

full theory (matching). In other words, extra heavy particles and fields are

integrated out (their low energy effects are included as quantum mechanical

averages) leaving their footprints in these coefficients. The SM is then consid-

ered as the low energy limit (effective field theory) of the more fundamental

theory. Since at present one can only speculate as to what this theory might
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be, one may alternatively take the coefficients of the non-renormalizable op-

erators to parametrize arbitrary extensions of the SM constrained only by the

local SM gauge symmetries.

In addition to these non-negotiable local gauge symmetries, the renormaliz-

able SM Lagrangian happens to have additional symmetries which arise sim-

ply because any term that would violate them would also violate local gauge

invariance. E.g., electron number, muon number16, and tau number are (at

least perturbatively) conserved, and likewise the total quark number and thus

baryon number. And as discussed in Section 1.3.4, the two generation SM con-

serves CP in the electroweak sector, leading to the suppression of CP violation

in the full three generationmodel. Thus, one can understand such symmetries

as accidental without the need to postulate them as additional physical prin-

cipals. But by the same token, one would generally expect them to be broken

by non-renormalizable terms.

1.5.2
Lepton Number Nonconservation and Neutrino Mass

At order Λ−1
new baryon number is still accidentally conserved, but one can form

Lorentz and locally gauge-invariant terms (80) out of any two lepton doublets

and two Higgs doublets. Replacing each Higgs doublet by the VEV (1.15)

yields a sum of terms which can be interpreted as mass terms for neutrinos,

LM = −∑
ij

λij

Λnew
νci νj v

2. (1.35)

But unlike the mass terms for charged leptons and quarks which originate

from the Yukawa terms (1.21) and connect left- and right-handed fields (Dirac

mass terms), LM connects the left- and right-handed components of conjugate

fields (Majorana mass terms).

As a result, Majorana mass terms (81) for neutrinos violate lepton number

(the number of leptons minus antileptons) by two units and the same holds

true for the corresponding trilinear and cuatrilinear neutrino–Higgs interac-

tions. This implies the important prediction of the possibility of neutrinoless

double β decays (0νββ decays), such as K− → π+e−e− and more importantly

of nuclei. 0νββ decays are searched for in experiments with large volume de-

tectors but have not been observed so far.

Another consequence of LM is the lepton number conserving but lepton

flavor number violating process of neutrino oscillations (the change of one

ν flavor into another over long flight paths), provided that the matrix of pa-

rameters, λij, has non-vanishing off-diagonal entries, in which case the mass

16) These forbid processes such as µ → eγ.
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and weak interaction eigenstates of neutrinos are not the same17. This mir-

rors the situation from the quark sector, and indeed a neutrino mixing matrix

(82), VMNS, analogous to VCKM in Eq. (1.30), arises. The only difference is that

left-handed fields are not independent of right-handed antifields so that the

counting of observable phases is modified. The result is that there are Nν − 1

additional (CP violating) phases (Majorana phases) because, in contrast to

the quark sector, phase redefinitions of right-handed fields do not enter here.

While it appears to be extraordinarily difficult to design an experiment tomea-

sure the two Majorana phases (for Nν = 3), several of the other parameters in

VMNS have already been measured in experiments studying neutrinos origi-

nating from the sun (83), the earth’s atmosphere (84), nuclear reactors (85), and

particle accelerators (86). What is observed in these experiments is the disap-

pearance (rate decrease) of neutrinos of a particular flavor from a source with

known flavor composition. Conversely, one may detect a neutrino flavor not

initially present in the source (appearance experiment). On the other hand,

the sum of all neutrino flavors appears to be unchanged (87), as is expected if

VMNS is indeed the (only) origin of neutrino oscillations. It is conceivable that

the extra phase inVMNS which has its direct analog inVCKM (Dirac phase) may

also be accessible in future ν oscillation experiments. In any case, all experi-

mental results are consistent with neutrino mass differences of the order of

10−1 eV (from atmospheric neutrinos) and 10−2 eV (from solar neutrinos) and

generally large mixing angles. Assuming that the λij are of O(1) or smaller18,

one obtains estimates, Λnew
<∼ O(1015 GeV) and <∼ O(1016 GeV), respectively.

This is interestingly close to the Planck scale, MP ∼ O(1018 GeV), defined as

the scale where quantum corrections to gravity are no longer negligible and

where fundamental and far reaching modifications to current theories of ele-

mentary particles are expected19.

The term (1.35)was introduced without reference to any particularmodel of

the physics at higher energy scales. The most important (because very simple)

concrete realization is the so-called see-saw mechanism (88; 89; 90) in which

right-handed neutrinos, νR, are added to the SM. They are singlets under the

SMgauge group and one would generally expect them to have very large (Ma-

jorana) masses (there is no symmetry reason why they should be of the order

of the electroweak scale). The role of Λnew is here played by the right-handed

neutrino mass scale, and the left-handed neutrino masses are generated by

17) Of course, this also requires that the neutrino masses differ from
each other. Hence, neutrino oscillation amplitudes are proportional
to neutrino mass differences.

18) The λij cannot be much larger than one, since their β-functions (see
Section 1.3.1) would drive them back to order unity at the elec-
troweak scale even if they started out much larger at Λnew.

19) Additional modifications may become necessary at additional scales
between MZ and MP.
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mixing terms analogous to Eq. (1.21). The term (1.35) would now be the result

of integrating out the νR and one arrives at the SM as an effective field theory

as discussed at the beginning of this Section.

Alternatively, since the νR do not participate in the SM gauge interactions

one may also assume that for some reason they cannot have Majorana masses.

In this case, one would be left with the Yukawa terms (1.21) andDirac neutrino

masses, and VMNS would have the same form as VCKM.

1.5.3
Baryon Number Nonconservation and Proton Decay

At order Λ−2
new there are interaction terms (80; 91) that violate both baryon and

lepton number. These involve one lepton and three quark fields and predict

proton decay rates at O(Λ−4
new). The proton lifetime, τp, can be studied with

large water detectors, but so far proton decay has not been observed and a

lower (mode-independent) limit, τp > 2 × 1029 years (78), could be set. On

dimensional grounds, τp is roughly of the order Λ4
new/m

5
p (mp = 938 MeV is

the proton mass), so that (assuming that all relevant coupling constants are of

order unity) Λnew
>∼ O(1015 GeV), which is not inconsistent with the scales

indicated by ν oscillations.

A realization of these model-independent observations are Grand Unified

Theories (92) in which quarks and leptons are conjectured to inhabit the same

irreps of a larger gauge group, the simplest possibility being SU(5). This im-

plies proton decay (e.g., p → e+π0), with the role of Λnew being played by

the masses of the additional gauge bosons predicted by the larger local gauge

symmetry (SSB induced by extra Higgs fields would have to be at work).

Baryon number is violated in the SM even without the non-renormalizable

operators. Asmentioned in Section 1.2.7, anomalies can violate otherwise con-

served quantities. In the SM this happens both to baryon and lepton number

(but not the difference), and can be understood as an instanton effect (93).

However, this is an extremely small (by any standards) quantum mechani-

cal tunneling effect (from one vacuum to a gauge transformed vacuum) and

therefore only of academic interest.

Even though proton decay has not yet been observed, baryon number vio-

lation is a pressing problem: if baryon number is exactly conserved, then the

baryon asymmetry of the universe (BAU), i.e., why the universe contains more

baryons than antibaryons (no large concentrations of antimatter are observed)

would be difficult to understand. Moreover, baryon number violation is nec-

essary but not sufficient to produce the BAU (94); a fairly strong source of CP

violation beyond the CKM phase δ is necessary, as well. Thus, there is a large

variety of reasons to strongly suspect that there is physics beyond the SM.



1.5 Beyond the Minimal Model 27

Glossary

Action: The action is defined to generate the classical equations of motions as

its stationary “points” (Euler-Lagrange equations). It is particularly use-

ful to construct theories which are invariant under some symmetry such

as gauge invariance. A quantity called “action” also enters the weight

factor in the path integral formalism, but is not always identical to its

classical counterpart.

Anomaly: Symmetry violation by quantum effects. Gauge anomalies may ap-

pear in chiral theories in which case they spoil their mathematical con-

sistency. Anomalies of other symmetries are permissable and may lead

to interesting physical effects.

Chiral Theory: A theory that fundamentaly distinguishes left-handed and

right-handed particles and fields (handedness).

Feynman Diagrams: Effective and intuitive way to visualize the perturbative

contributions to quantum mechanical amplitudes. Each line in a Feyn-

man diagram represents a particle. Each diagram translates into a con-

crete mathematical expression.

Gauge Symmetry: Gauge invariance of the first kind is invariance under

global (spacetime independent) phase multiplications and their non-

Abelian generalizations. Gauge invariance of the second kind is the gen-

eralization to local (spacetime dependent) transformations.

Hamiltonian: Symmetry generator of time translations and thus one of the

elements of the Poincaré algebra. It is an operator with energy eigenval-

ues. In QFTs it usually takes the form of a space integral over a Hamil-

tonian density, which is also often referred to simply as Hamilitonian.

Lagrangian: The action usually takes the form as a time integral over a func-

tion called the Lagrangian. The Hamiltonian (density) can be obtained

in terms of the Lagrangian (density).

Loops: Closed line in a Feynman diagram. A loop represents virtual par-

ticles of arbitrary energy and momentum over which one has to sum

(integrate). Feynman diagrams with loops are often divergent.

Path Integral: Spacetime approach to quantum mechanics in which ampli-

tudes are given as functional integrals over all possible path histories

weighted by a complex phase factor given in terms of the action.

Poincaré Group: The fundamental symmetry group of spacetime consisting

of translations in space and time, rotations and Lorentz boosts. The
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Poincaré group can be generated by infinitesimal symmetry transfor-

mations. The corresponding symmetry generators form the associated

Poincaré algebra.

Regularization: Technique to organize the divergent parts of Feynman di-

agrams. Physical results should not depend on the regularization

method.

Renormalizable Theory (modern sense): Theory in which all divergencies

can be absorbed by counterterms.

Renormalizable Theory (strict sense): Theory in which all divergencies can

be absorbed by a finite number of counterterms.

Renormalization: The process to absorb the divergencies in counterterms.

Only the finite sum of the divergent Feynman diagrams and infinite

counterterms are physically meaningful.
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