En hísqueda del mundo cuántico de la gravedad

Escuela de Verano 2015

Gustavo Niz

Grupo de Gravitación y Física Matemática

Grupo de Gravitación y

 Física Matemática

Hoy y Viernes - Mayor información

Quantum gravity. Part I

1. General Relativity
2. Quantum field Theory
3. Where is the UV problem?

GR as a Cooking Book

- Ingredients
- Physics \& Maths
- Cookware
- Equations
- Recipes
- Solutions

Ingredients

- Why GR?

Newtonian gravity
Particle moves in straight line until hit by a force

Vs
Einstein's gravity
Gravity is not a force but a result of space-time geometry

Ingredients

- Why GR?

Newtonian gravity
Particle moves in straight line until hit by a force

Vs
Einstein's gravity (GR)

Gravity is not a force but a result of space-time geometry

Keywords

Ingredients

Need to understand
a) Space and time together
b) Curved space

Ingredients

Need to understand
a) Space and time together
b) Curved space

Ingredients: Special Relativity

- Speed of light is constant in any frame ($\mathrm{c}=1$)
- Space and time are entangled

Coordinates of space-time

$$
\left.\begin{array}{rl}
x^{0} & \equiv c t=t \\
x^{1} & \equiv x \\
x^{2} & \equiv y \\
x^{3} & \equiv z
\end{array}\right\} x^{i}
$$

Ingredients: Special Relativity

Special Relativity (SR) lives in
 Minkowski space-time

4-vector

Event P

Ingredients: Special Relativity

Minkowski metric

$$
\eta=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Distance (dot product)
Summation convention

$$
A \cdot B=\eta_{\mu \nu} A^{\mu} B^{\nu}=-A^{0} B^{0}+A^{1} B^{1}+A^{2} B^{2}+A^{3} B^{3}
$$

Infinitesimal distance (line element)

$$
d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}
$$

Same information as in the metric

Ingredients: Special Relativity

Lorentzian signature

$$
(-,+,+,+)
$$

[sometimes (+,-,-,--)]
C.f. Euclidean 4d space

$$
d s_{E}^{2}=\delta_{\mu \nu} d x^{\mu} d x^{\nu}=d w^{2}+d x^{2}+d y^{2}+d z^{2}
$$

Euclidean signature

$$
(+,+,+,+)
$$

Ingredients: Special Relativity

Lorentz group

- Transformations that leave ds unchanged
e.g. x-direction boost

$$
\begin{aligned}
t & \rightarrow \gamma(t-v x) \\
x & \rightarrow \gamma(x-v t)
\end{aligned}
$$

$$
\gamma \equiv\left(1-v^{2}\right)^{-1 / 2}
$$

Exercise

$$
d s^{2} \rightarrow d s^{2}
$$

Ingredients: Special Relativity

For a particle moving only in time ($\boldsymbol{x}^{\prime}=$ const.) the elapsed time is

$$
d s^{2}=-d t^{2}<0
$$

Define proper time as

$$
\tau=\int \sqrt{-d s^{2}}
$$

Ingredients: Special Relativity

Spacetime diagram

Ingredients: Special Relativity

Spacetime diagram

Null vector

$$
d s^{2}=0
$$

OBSERVER

Defines light-cone
PASTLIGHT CONE

Ingredients: Special Relativity

Spacetime diagram

Null vector

$$
d s^{2}=0
$$

OBSERVER
Timelike vector

$$
d s^{2}<0
$$

Spacelike vector

$$
d s^{2}>0
$$

Ingredients: Special Relativity

Trajectory specified by
 $$
x^{\mu}(\lambda)
$$

is timelike/spacelike/null
if tangent vector $\frac{d x^{\mu}}{d \lambda}$
is timelike/spacelike/null

Ingredients: Special Relativity

- Null trajectories represent light or massless particles
- Spacelike trajectories are causally disconnected points (or particles with $\boldsymbol{v > 1 \text {) }}$
- Timelike trajectories describe massive particles (observers)

More
$\underset{\text { use proper }}{\text { convenient to }} \quad \tau=\int \sqrt{-d s^{2}}=\int \sqrt{-\eta_{\mu \nu} \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}} d \lambda$ time

Ingredients: Special Relativity

Massive particles

4-velocity

$$
\mathcal{U}^{\mu}=\frac{d x^{\mu}}{d \tau} \quad\left(\mathcal{U}^{\mu} \mathcal{U}_{\mu}=\eta_{\mu \nu} \mathcal{U}^{\mu} \mathcal{U}^{\nu}=-1\right)
$$

4-momentum

$$
P^{\mu}=m \mathcal{U}^{\mu}
$$

m rest frame mass

Ingredients: Special Relativity

Massive particles

4-velocity
4-momentum

$$
\mathcal{U}^{\mu}=\frac{d x^{\mu}}{d \tau}
$$

$$
P^{\mu}=m \mathcal{U}^{\mu}
$$

Energy is P^{0}, which in the rest frame, is

$$
P^{0}=m \quad\left(\text { c.f. } E=m c^{2}\right)
$$

Ingredients: Special Relativity

Massive particles

One can boost the frame with a Lorentz transf., say in the x -dir. $\quad \gamma \equiv\left(1-v^{2}\right)^{-1 / 2}$

$$
P^{\mu}=(\gamma m, v \gamma m, 0,0)
$$

Which for small \boldsymbol{V} reduces to

$$
\begin{array}{ll}
P^{0}=m+\frac{1}{2} m v^{2} & \\
\text { Rest mass + kinetic energy } \\
P^{1}=m v & \\
\text { Newtonian momentum }
\end{array}
$$

Ingredients: Curved Space

Minkoswki

Manifold

Cartesian coords.

Cannot use Cartesian coords. globally

Ingredients: Curved Space

Manifold

Def. A topological space M is an n-dimensional manifold if there is a collection (atlas, $\left\{\phi_{i}\right\}$) of maps (charts, ϕ_{i}), such that each map $\phi_{i}: \mathcal{M} \rightarrow \Re^{n}$ is continuous, bijective and invertible

Ingredients: Curved Space

In simple words

x

Ingredients: Curved Space

Equivalence Principle.

A choice of chart (coordinates) is arbitrary and the physics should not depend on this!

A convenient way to describe chart-independent equations is to use tensors, which can be thought of generalisations of vectors, with possibly more indices

Ingredients: Tensors

Under a coordinate transformation $x^{\mu} \rightarrow x^{\prime \mu}$ a vector A^{μ} changes in the following way

$$
A^{\prime \mu}=\frac{\partial x^{\mu}}{\partial x^{\prime \nu}} A^{\nu}
$$

(summation convention)

Ingredients: Tensors

Under a coordinate transformation $x^{\mu} \rightarrow x^{\prime \mu}$ a tensor $T_{\mu_{1}, \ldots, \mu_{n}}{ }_{\nu}, \ldots, \nu_{m}$ changes in the following way

(n,m) - Tensor

$$
\begin{aligned}
& T_{\mu_{1}, \ldots, \mu_{n}}^{\prime} \begin{array}{l}
\nu_{1}, \ldots, \nu_{m} \\
\\
\quad= \\
\quad \frac{\partial x^{\prime \bar{\mu}_{1}}}{\partial x^{\mu_{1}}} \cdots \frac{\partial x^{\prime \bar{\mu}_{n}}}{\partial x^{\mu_{n}}} \frac{\partial x^{\nu_{1}}}{\partial x^{\prime \bar{\nu}_{1}}} \cdots \frac{\partial x^{\nu_{m}}}{\partial x^{\prime \bar{\nu}_{m}}} T_{\bar{\mu}_{1}, \ldots, \mu_{n}} \overline{\bar{\mu}}_{1}, \ldots, \bar{\nu}_{m}
\end{array}
\end{aligned}
$$

(summation convention)

Ingredients: Tensors

Observations
$(0,0)$ - tensor
scalar (function)
$(0,1)$ - tensor
\longrightarrow vector
$(1,0)$ - tensor
co-vector

Ingredients: Tensors

Observations

Trace over indices

$$
S^{\mu}=T_{\lambda}^{\lambda \mu}
$$

Symmetric

$$
S_{\ldots \alpha \beta \ldots}=+S_{\ldots \beta \alpha \ldots}
$$

Antisymmetric

$$
A_{\ldots \alpha \beta \ldots}=-A_{\ldots \beta \alpha \ldots}
$$

Ingredients: Tensors

Observations

An equation that holds in one coordinate system holds in all coordinate systems

Equivalence Principle!

Ingredients: Tensors

In GR the most important tensor is the metric
$g_{\mu \nu}$
a generalisation of Minkowski's metric $\eta_{\mu \nu}$ which encodes the geometrical information of spacetime

Ingredients: Tensors

At a given point, there is always a coordinate system such that

$$
g_{\mu \nu}\left(x_{p}^{\mu}\right)=\eta_{\mu \nu}
$$

and also first derivatives of $g_{\mu \nu}$ vanish!

Second derivatives cannot be made to vanish, a manifestation of curvature

Ingredients: Tensors

Dot product
 $$
A \cdot B \equiv g_{\mu \nu} A^{\mu} B^{\nu}
$$

Suggests the concept of raising/lowering indices, namely

$$
A_{\mu}=g_{\mu \lambda} A^{\lambda} \quad B^{\mu}=g^{\mu \lambda} B_{\lambda}
$$

where $g^{\mu \nu}$ is the inverse of $g_{\mu \nu}$
so $g_{\mu \lambda} g^{\lambda \nu}=\delta_{\mu}^{\nu}$

Ingredients: Tensors

Important objects in physics which are not tensors

1) determinants

$$
\text { e.g. } \quad g \equiv \operatorname{det} g_{\mu \nu}
$$

Under $x^{\mu} \rightarrow x^{\prime \mu} \quad$ transforms as

$$
g \rightarrow\left[\operatorname{det}\left(\frac{\partial x^{\mu}}{\partial x^{\prime \nu}}\right)\right]^{-2} g
$$

Ingredients: Tensors

Important objects in physics which are not tensors
2) volume factor $\quad d^{4} x=d x^{0} d x^{1} d x^{2} d x^{3}$

Transforms as

$$
d^{4} x \rightarrow \operatorname{det}\left(\frac{\partial x^{\mu}}{\partial x^{\prime \nu}}\right) d^{4} x
$$

1) and 2) are call tensor densities because transform as some powers of the Jacobian

Ingredients: Tensors

Important objects in physics which are not tensors

Notice

$$
\int f\left(x^{\mu}\right) \sqrt{-g} d^{4} x
$$

Is invariant under a change of coordinate, since $f(x)$ is a scalar

Ingredients: Tensors

Important objects in physics which are not tensors

Notice

$$
\int f\left(x^{\mu}\right) \sqrt{-g} d^{4} x
$$

Is invariant under a change of coordinate, since $f(x)$ is a scalar
Therefore the right way of writing integrals is using

$$
\int d^{4} x \rightarrow \int \sqrt{-g} d^{4} x
$$

Ingredients: Tensors

Important objects in physics which are not tensors

3) Partial derivatives
On scalar are OK

$$
\partial_{\mu} \phi \rightarrow \partial_{\bar{\mu}} \phi^{\prime}=\frac{\partial x^{\mu}}{\partial x^{\prime \bar{\mu}}} \partial_{\mu} \phi
$$

...but on vectors,
$\partial_{\mu} V^{\nu} \rightarrow \partial_{\bar{\mu}} V^{\prime \bar{\nu}}=\frac{\partial x^{\mu}}{\partial x^{\prime \bar{\mu}}} \partial_{\mu}\left[\frac{\partial x^{\prime \bar{\nu}}}{\partial x^{\nu}} V^{\nu}\right]$

$$
=\frac{\partial x^{\mu}}{\partial x^{\prime \bar{\mu}}} \frac{\partial x^{\prime \bar{\nu}}}{\partial x^{\nu}} \partial_{\mu} V^{\nu}+\frac{\partial x^{\mu}}{\partial x^{\prime \bar{\mu}}} \frac{\partial^{2} x^{\prime \bar{\nu}}}{\partial x^{\mu} \partial x^{\nu}} V^{\nu}
$$

Ingredients: Tensors

Important objects in nhvsics which are not tensors

$$
\begin{aligned}
& T_{\mu_{1}, \ldots, \mu_{n}}^{\nu_{1}, \ldots, \nu_{m}} \\
& \partial x^{\prime \bar{\mu}_{1}} \quad \partial x^{\prime \bar{\mu}_{n}} \partial x^{\nu_{1}} \quad \partial x^{\nu_{m}} \\
& =\frac{x^{\prime}}{\partial x^{\mu_{1}}} \cdots \frac{}{\partial x^{\mu_{n}}} \frac{\partial x^{\prime \bar{\nu}_{1}}}{\partial x^{\prime}} \cdot \frac{x^{\prime \bar{\nu}_{m}}}{\partial x_{\bar{\mu}_{1}, \ldots, \bar{\mu}_{n}}^{\bar{\nu}_{1}, \ldots, \bar{\nu}_{m}}} \\
& \partial_{\mu} V^{\nu} \rightarrow \partial_{\bar{\mu}} V^{\prime \bar{\nu}}=\frac{\sigma x}{\partial x^{\prime \bar{\mu}}} \partial_{\mu}\left[\frac{\sigma x}{\partial x^{\nu}} V^{\nu}\right] \\
& =\frac{\frac{\partial x^{\mu}}{\partial x^{\prime \bar{\mu}}} \frac{\partial x^{\prime \bar{\nu}}}{\partial x^{\nu}} \partial_{\mu} V^{\nu}}{}+\frac{\frac{\partial x^{\mu}}{\partial x^{\prime \bar{\mu}}} \frac{\partial^{2} x^{\prime \bar{\nu}}}{\partial x^{\mu} \partial x^{\nu}} V^{\nu}}{}
\end{aligned}
$$

Ingredients: Tensors

Define the Covariant Derivative

$$
\nabla_{\mu} V^{\nu} \equiv \partial_{\mu} V^{\nu}+\Gamma_{\mu \lambda}^{\nu} V^{\lambda}
$$

$$
\partial_{\bar{\mu}} V^{\prime \bar{\nu}}=\frac{\frac{\partial x^{\mu}}{\partial x^{\prime \bar{\mu}}} \frac{\partial x^{\prime \bar{\nu}}}{\partial x^{\nu}} \partial_{\mu} V^{\nu}}{\underbrace{\frac{\partial x^{\mu}}{\partial x^{\prime} \bar{\mu}} \frac{\partial^{2} x^{\prime \bar{\nu}}}{\partial x^{\mu} \partial \bar{x}^{\bar{\nu}}} V^{\nu}}}
$$

Ingredients: Tensors

$\nabla_{\mu} V^{\nu}$ transforms a tensor and defines parallel transport

Ingredients: Tensors

$\nabla_{\mu} V^{\nu}$ transforms a tensor and defines parallel transport

Similarly for lower indices

$$
\nabla_{\mu} w_{\nu} \equiv \partial_{\mu} w_{\nu}-\Gamma_{\mu \nu}^{\lambda} w_{\lambda}
$$

Ingredients: Tensors

Christoffel Symbols

There is a particular choice of connection that

$$
\nabla_{\mu}\left(g_{\nu \sigma}\right)=0
$$

In components, it is

$$
\Gamma_{\mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \sigma}\left(\partial_{\mu} g_{\sigma \nu}+\partial_{\nu} g_{\mu \sigma}-\partial_{\sigma} g_{\mu \nu}\right)
$$

Ingredients: Curvature

Information about the curvature is contained in the metric tensor, and it is the Riemann tensor which explicitly accounts for it

$$
\begin{aligned}
R_{\mu \alpha \beta}^{\sigma}= & \partial_{\alpha}\left(\Gamma_{\mu \beta}^{\sigma}\right)-\partial_{\beta}\left(\Gamma_{\mu \alpha}^{\sigma}\right) \\
& +\Gamma_{\alpha \lambda}^{\sigma} \Gamma_{\mu \beta}^{\lambda}-\Gamma_{\beta \lambda}^{\sigma} \Gamma_{\mu \alpha}^{\lambda}
\end{aligned}
$$

(note: it has second derivatives of the metric)

Ingredients: Curvature

Geometrical interpretation

In Euclidean space if a vector is parallel transported around a closed loop, it returns unchanged.
In curved space, this is not necessarily true.

The Riemann tensor measures the difference!

Ingredients: Curvature

Properties of $R_{\mu \nu \lambda}^{\sigma}$

1) $R_{\mu \nu \lambda \sigma}^{\text {at }}$

Symmetric

2) $\nabla_{\rho} R_{\mu \nu \lambda \sigma}+\nabla_{\nu} R_{\rho \mu \lambda \sigma}+\nabla_{\mu} R_{\nu \rho \lambda \sigma}=0$
(Bianchi identity)
3) $R_{\mu \nu \lambda}^{\sigma}+R_{\nu \lambda \mu}^{\sigma}+R_{\lambda \mu \nu}^{\sigma}=0$

Ingredients: Curvature

Other tensors derived from $R_{\mu \nu \lambda}^{\sigma}$

1) Riccio tensor

$$
R_{\mu \nu}=R_{\mu \lambda \nu}^{\lambda}
$$

It satisfies $R_{\mu \nu}=R_{\nu \mu}$
2) Ricci scalar

$$
R=R_{\mu}^{\mu} \equiv g^{\mu \nu} R_{\mu \nu}
$$

Ingredients: Curvature

Other tensors derived from $R_{\mu \nu \lambda}^{\sigma}$
3) Einstein tensor

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R
$$

It obeys

$$
\nabla_{\mu} G_{\nu}^{\mu}=0
$$

$$
\begin{aligned}
& \frac{\text { Cookware Einsein Equations }}{\text { Enamentrast }} \\
& G_{\mu \nu}=8 \pi G_{N} T_{\mu \nu}
\end{aligned}
$$

Cookware: Einstein Equations

Non-linear equations of the metric components!

Cookware: Einstein Equations

Dimension-full parameters

Newton's Constant

$$
6.67 \times 10^{-11} \mathrm{~N} \frac{\mathrm{~m}^{2}}{\mathrm{Kg}^{2}}
$$

If $\mathrm{c}=\mathrm{h}=1$ then

$$
M_{p l}^{2}=8 \pi G_{N} \simeq\left(10^{8} \mathrm{GeV}\right)^{2}
$$

Cookware: Einstein Equations

Geometría del
Materia/Energía
Espacio-tiempo

Cookware: Einstein Equations

El espacio-tiempo es como una "manta" invisible deformado por la materia o energía

Cookware: Einstein Equations

Cauchy Problem. Similar for RG

1)	G_{00}	No \boldsymbol{t} derivatives	Constraints
2)	$G_{0 i}$	1st order \boldsymbol{t} der.	Constraints
3)	$G_{i j}$	2nd order \boldsymbol{t} der.	Evolution eqns.

Find $g_{\mu \nu}, g_{\mu \nu, 0} \equiv \partial_{0} g_{\mu \nu}$ for $x^{0}=0$, which satisfy the constraints initially, and use the evolution equations to solve for $x^{0}>0$
The equations are linear in second derivatives!

Cookware: Einstein Equations

Relevant components of the metric

$g_{\mu \nu}$ has 10 independent components (remember it is symmetric), but there are 6 evolution equations to determine them (?).

Actually, we have an arbitrary choice of coordinates. Therefore, there are only 10-4=6 variables to determine, which can be found using the evolution equations.

Cookware: Einstein Equations

Energy momentum tensor $T_{\mu \nu}$
A popular choice is a perfect fluid

- Fluid with no viscosity, or heat flow, and isotropic in its rest frame
- Completely specified by energy density and pressure

$$
T_{\mu \nu}=(\rho+p) U_{\mu} U_{\nu}-p g_{\mu \nu} \quad T_{\nu}^{\mu}=\left(\begin{array}{cccc}
-\rho & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

where U^{μ} is the unitary 4-velocity

- Bianchi identity implies conservation

$$
\nabla_{\mu} T_{\nu}^{\mu}=0
$$

Cookware: Einstein Equations

Newtonian limit
Recall Poission equation for the Newtonian potential Φ

Cookware: Einstein Equations

Newtonian limit
Recall Poission equation for the Newtonian potential Φ

Cookware: Einstein Equations

Newtonian limit
Recall Poission equation for the Newtonian potential Φ

Einstein equations
Can be done formally

Cookware: Hilbert-Einstein action

Einstein equations can be obtained from

$$
\begin{gathered}
S=\int \sqrt{-g} d^{4} x\left(\frac{1}{16 \pi G_{N}} R+\mathcal{L}_{m}\right) \\
\frac{\delta S}{\delta g_{\mu \nu}}=0 \\
\frac{1}{8 \pi G_{N}}\left(R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R\right)=-\frac{2}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} \mathcal{L}_{m}\right)}{\delta g_{\mu \nu}} \equiv T_{\mu \nu}
\end{gathered}
$$

Cookware: Hilbert-Einstein action

Can include a Cosmological Constant

$$
\begin{aligned}
S & =\int \sqrt{-g} d^{4} x\left(\frac{1}{16 \pi G_{N}}(R-2 \Lambda)+\mathcal{L}_{m}\right) \\
\frac{\delta S}{\delta g_{\mu \nu}} & =0 \quad \square \quad G_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi G_{N} T_{\mu \nu}
\end{aligned}
$$

Cookware: Alternative approaches

Hamiltonian (ADM or 3+1 formalism)
Consider the space-time splitting

$$
g_{\mu \nu}=\left(\begin{array}{cc}
-N^{2}+\gamma_{i j} N^{i} N^{j} & \gamma_{i k} N^{k} \\
\gamma_{j k} N^{k} & \gamma_{i j}
\end{array}\right)
$$

N lapse function
N^{i} shift function
$g_{i j}$ spatial metric

Cookware: Alternative approaches

Hamiltonian (ADM or 3+1 formalism)
Extrinsic curvature $\quad K_{i j}=\frac{1}{2 N}\left[\partial_{t}\left(\gamma_{i j}\right)-\nabla_{i} N_{j}-\nabla_{j} N_{i}\right]$
Then one gets the Hamiltonian
$\xrightarrow{\longrightarrow}$ Canonical momenta

Hamiltonian

$$
H=-\sqrt{\gamma}^{(3)} R+\frac{1}{\sqrt{\gamma}}\left(K_{i j} K^{i j}-\left(K_{i}^{i}\right)^{2}\right)
$$

Momentum $\quad H^{i}=2 \nabla_{j} \Pi^{i j}$

Cookware: Alternative approaches

Hamiltonian (ADM or 3+1 formalism)
Observations

- Only $\gamma_{i j}$ is dynamical
- N, N^{i} are Lagrange multipliers which lead to (in vacuum)

$$
H \simeq 0, \quad H^{i} \simeq 0
$$

Dynamical D.O.F.

$$
6-(1+3)=2 \quad \square \quad \text { two polarization modes } \begin{gathered}
\text { of the graviton }
\end{gathered}
$$

Recipes: linearised theory

Consider perturbation around flat-space

$$
g_{\mu \nu}=\eta_{\mu \nu}+\epsilon h_{\mu \nu} \quad \epsilon \ll 1
$$

Use the traceless combination

$$
\bar{h}_{\mu \nu}=h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h
$$

Using coordinate freedom, choose

$$
\nabla_{\mu} \bar{h}^{\mu \nu}=0
$$

Recipes: linearised theory

Consider perturbation around flat-space

$$
g_{\mu \nu}=\eta_{\mu \nu}+E h_{\mu \nu}
$$

$$
\epsilon \ll 1
$$

Use the traceless combinatio GRAVITON

$$
\bar{h}_{\mu \nu}=h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h
$$

Using coordinate freedom, choose

$$
\nabla_{\mu} \bar{h}^{\mu \nu}=0
$$

Recipes: linearised theory

Then Einstein eqs. reduce to

$$
\square \bar{h}_{\mu \nu}=16 \pi G_{N} T_{\mu \nu}
$$

Or in vacuum

$$
\begin{aligned}
& \square \bar{h}_{\mu \nu}=0 \\
& \text { propagating over Minkowski) }
\end{aligned}
$$

Recipes: Gravity waves

Interferometer's resolution

Recipes: perturbative expansion

Consider the next order in perturbations

$$
S=\int \sqrt{-g} d^{4} x\left(\frac{1}{16 \pi G_{N}}(R-2 \Lambda)+\mathcal{L}_{m}\right)
$$

2nd order in

$$
\longrightarrow \square \bar{h}_{\mu \nu}=0
$$

Lagrangian

3rd order in Lagrangian

$$
\longrightarrow \square \bar{h}_{\mu \nu}=\epsilon\left(C_{1} h^{\mu \nu} h_{\mu \nu}+C_{2} h^{2}\right)
$$

Graviton interactions!!!!

Recipes: beyond classical theory

How do we quantise this graviton and its interactions?

$$
\square \bar{h}_{\mu \nu}=\epsilon\left(C_{1} h^{\mu \nu} h_{\mu \nu}+C_{2} h^{2}\right)
$$

Quantum Field Theory

in a

QFT: review of quantum mechanics

Harmonic Oscillator

$$
H \sim p^{2}+x^{2}
$$

Define creation/annihilation operators

$$
x \sim \sqrt{\hbar}\left(a^{\dagger}+a\right), \quad p \sim \sqrt{\hbar} i\left(a^{\dagger}-a\right)
$$

Hamiltonian becomes

$$
H \sim h^{2}\left(a^{\dagger} a+\frac{1}{2}\right)
$$

QFT: review of quantum mechanics

Promote \boldsymbol{x} and \boldsymbol{p} to operators and impose the
Canonical Commutation Relationships

$$
[x, p]=i \hbar \quad \Longleftrightarrow \quad\left[a, a^{\dagger}\right]=1
$$

And find that

$$
\begin{aligned}
a|n\rangle & \sim|n-1\rangle & H|n\rangle=E_{n}|n\rangle \\
a^{\dagger}|n\rangle & \sim|n+1\rangle & E_{n}=\hbar(n+1 / 2)
\end{aligned}
$$

To avoid negative probabilities define vacuum to be

$$
a|0\rangle=0
$$

QFT: review of quantum mechanics

Spectrum of states

$$
E_{n}=\hbar(n+1 / 2)
$$

QFT: moving towards fields

Imagine a system with many oscillators, one at each point of space.

Quantum Field Theory!!!!

QFT: moving towards fields

A quantum free (scalar) field...

$$
\begin{aligned}
& x, p \\
& {[x, p]=i \hbar}
\end{aligned}
$$

$$
x \sim \sqrt{\hbar}\left(a^{\dagger}+a\right)
$$

$$
\left[a, a^{\dagger}\right]=1
$$

$$
\begin{aligned}
& \phi(x, y, z, t), \Pi(x, y, z, t) \\
& {\left[\phi\left(x^{\mu}\right), \Pi\left(y^{\mu}\right)\right]=i \hbar \delta\left(x^{\mu}-y^{\mu}\right)} \\
& \phi\left(x^{\mu}\right) \sim \int d p\left(a_{p}^{\dagger} e^{-i p \cdot x}+a_{p} e^{i p \cdot x}\right) \\
& {\left[a_{p}, a_{q}^{\dagger}\right]=(2 \pi)^{3} \delta\left(p^{\mu}-q^{\mu}\right)}
\end{aligned}
$$

QFT: particles and vacuum

QFT vacuum

$$
a_{p}|0\rangle=0 \quad \text { for all } a_{p}
$$

"Particle" of momenta \boldsymbol{p}

$$
|p\rangle=a_{p}^{\dagger}|0\rangle
$$

2 "Particles"

$$
|p, q\rangle=a_{p}^{\dagger} a_{q}^{\dagger}|0\rangle
$$

QFT: vacuum energy

Hamiltonian

$$
\begin{aligned}
H & \sim \int d p E_{p}\left(a_{p} a_{p}^{\dagger}+a_{p}^{\dagger} a_{p}\right) \\
& \sim \int d p E_{p}\left(a_{p}^{\dagger} a_{p}+\because\left(\underset{(2 \pi)^{3} \delta(0) / 2}{3}\right)\right.
\end{aligned}
$$

Last term diverges \longrightarrow vacuum energy is infinite!
Solution: forget about it. Count energy differences (normal ordering)

QFT: Propagators

Probability of finding field from point \boldsymbol{x} to $\boldsymbol{y} \quad\left(x^{0}>y^{9}\right)$
$\langle 0| \phi(y) \phi(x)|0\rangle=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E_{p}} e^{i p \cdot(x-y)} \equiv \Delta_{F}(x-y)$
Representado por

Can show that

$$
\Delta_{F}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{-i}{p^{2}+m^{2}} e^{i p \cdot(x-y)}
$$

QFT: back to the graviton

How do we quantise this massless graviton with interactions?

$$
\square \bar{h}_{\mu \nu}=\epsilon\left(C_{1} h^{\mu \nu} h_{\mu \nu}+C_{2} h^{2}\right)
$$

Simpler case

$$
\square \phi=\epsilon C_{1} \phi^{2} \quad \begin{aligned}
& \text { Scalar field over flat } \\
& \text { (Minkowski's) space-time }
\end{aligned}
$$

QFT: scalar field

Can add a mass (Klein-Gordon equation)

$$
\left(\square-m^{2}\right) \phi=\lambda \phi^{2}
$$

Then Lagrangian is

$$
\mathcal{S}=\frac{1}{2} \int d^{4} x[-\left(\nabla^{\mu} \phi\right)\left(\nabla_{\mu} \phi\right) \underbrace{\left.-m^{2} \phi^{2}-\lambda \phi^{3}\right]}_{-V(\phi)}
$$

Kinetic Term
Potential (interactions)

QFT: scalar field

$$
\left(\square-m^{2}\right) \phi=\lambda \phi^{2}
$$

Classical solution is too hard, but can solve "free" theory (LHS only) if $\lambda / E \ll 1$
In Fourier space

$$
p^{\mu} p_{\mu}=m^{2}
$$

$$
\phi=e^{i p \cdot x} \phi_{p} \quad \mathrm{EOM} \longrightarrow E_{p} \equiv p^{0}= \pm \sqrt{\vec{p}^{2}+m^{2}}
$$

General soln. is the harmonic oscillator ensemble!

$$
\phi\left(x^{\mu}\right)=\int \frac{d^{3} p}{2 \pi \sqrt{E_{p}}}\left[a_{p} e^{i p \cdot x}+a_{p}^{\dagger} e^{-i p \cdot x}\right]
$$

QFT: perturbation theory

Perturbative approach

$$
\mathcal{S}=\frac{1}{2} \int d^{4} x[-\underbrace{\left.\left(\nabla^{\mu} \phi\right)\left(\nabla_{\mu} \phi\right)-m^{2} \phi^{2}-\lambda \phi^{3}\right]}
$$

$$
\mathrm{EOM} \quad\left(\square-m^{2}\right) \phi=0
$$

Now quantise
Propagator $\quad \Delta_{F}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{-i}{p^{2}+m^{2}} e^{i p \cdot(x-y)}$

Inverse of
Klein-Gordon

QFT: interactions

Perturbative approach

$$
\mathcal{S}=\frac{1}{2} \int d^{4} x[-\left(\nabla^{\mu} \phi\right)\left(\nabla_{\mu} \phi\right)-m^{2} \phi^{2}-\underbrace{\lambda \phi^{3}}]
$$

Treat interaction as small
Triple vertex

QFT: Feynman diagrams

All possible diagrams contribute to amplitudes eg. Two particle scattering

QFT: Loop divergences

Diagrams like this

may show divergences, like

$$
\sim \int_{0}^{\infty} \frac{d x}{x+M}
$$

Use Renormalisation theory to cure them

QFT: Renormalization

In simple words... consider a convergent series

$$
B=\sum_{i} A_{i} x
$$

where each A_{i} is a divergent quantity.
Rewrite the series in new variables \boldsymbol{y} so that each coefficient C_{i} is now finite!

$$
B=\sum_{i} C_{i} y
$$

QFT: Renormalization

When doing so for the divergent series

one has to add extra terms into the Lagrangian.

These are called Counter-terms, and depending on their properties one can say if the theory is renormalisable (ie if one can remove divergences)

The UV problem in GR

UV: Non-renormalisable

Where is the problem?

Consider

$$
S=\int d t d^{3} x\left(\partial_{\mu} \phi \partial^{\mu} \phi-g \phi^{n}\right)
$$

Re-scaling

$$
t \rightarrow b t
$$

Lorentz invariance

$$
x \rightarrow b x
$$

UV: Non-renormalisable

$$
\begin{aligned}
& S=\int d t d^{3} x\left(\partial_{\mu} \phi \partial^{\mu} \phi-g \phi^{n}\right) \\
& \frac{d S}{d b}=0 \quad \longrightarrow \\
& \phi \rightarrow b^{-1} \phi
\end{aligned}
$$

Potential

$$
V=g \int d t d^{3} x \phi^{n} \quad \rightarrow \quad b^{4-n} V
$$

Diverges in the UV if $\mathrm{n}>4$

UV: Non-renormalisable

Dimensional analysis

$$
\begin{gathered}
g \int d t d^{3} x \phi^{n} \\
{[g]=-(-1-3+n)=4-n<0}
\end{gathered}
$$

$S=\int d t d^{3} x\left(\partial_{\mu} \phi \partial^{\mu} \phi-g \phi^{n}\right) \quad$ Propagator $\propto \frac{1}{k^{2}}$

UV: Non-renormalisable

In General Relativity the perturbative theory is

$$
\begin{aligned}
\mathcal{L} & \sim \sqrt{-g} R \sim \frac{1}{G_{N}}\left(h^{\mu \nu} \tilde{\square} h_{\mu \nu}+\mathcal{O}\left(h^{3}\right)\right) \\
\left(h_{\mu \nu} \equiv g_{\mu \nu}-\eta_{\mu \nu}\right) \quad & \text { Differential operator of 2nd order }
\end{aligned}
$$

Can rescale the graviton $\quad h_{\mu \nu} \rightarrow \sqrt{G_{N}} h_{\mu \nu}$

$$
\mathcal{L} \rightarrow\left(h^{\mu \nu} \tilde{\square} h_{\mu \nu}+\sqrt{G_{N}} \mathcal{O}\left(h^{3}\right)\right)
$$

UV: Non-renormalisable

After rescaling:

$$
\mathcal{L} \rightarrow\left(h^{\mu \nu} \tilde{\square} h_{\mu \nu}+\sqrt{G_{N}} \mathcal{O}\left(h^{3}\right)\right)
$$

Free theory Interactions

$$
\left[\sqrt{G_{N}}\right]=-1
$$

Dimensionful coupling

UV: Non-renormalisable

- We need an infinite number of counter-terms
- Due to Lorentz symmetry the have to be powers of curvature tensors

$$
\begin{aligned}
S & =\int d^{4} x\left(R+\# R^{2}+\# R_{\mu \nu} R^{\mu \nu}+\# R_{\mu \nu \alpha \beta} R^{\mu \nu \alpha \beta}+\ldots\right. \\
& \sim \int d^{4} x h^{\mu \nu}\left(\tilde{\square}-G_{N} \tilde{\square}^{2}\right) h_{\mu \nu}+\ldots
\end{aligned}
$$

UV: Non-renormalisable

So what's wrong with $\int d^{4} x h^{\mu \nu}\left(\tilde{\square}-G_{N} \tilde{\square}^{2}\right) h_{\mu \nu} \quad ?$
Propagator (schematically)

$$
\begin{aligned}
& \sim \frac{1}{k^{2}}+\frac{1}{k^{2}} G_{N} k^{4} \frac{1}{k^{2}}+\frac{1}{k^{2}} G_{N} k^{4} \frac{1}{k^{2}} G_{N} k^{4} \frac{1}{k^{2}}+\ldots \\
& +\quad+R^{2}-R^{2}-R^{2}-+ \\
& \sim \frac{1}{k^{2}-G_{N} k^{4}}
\end{aligned}
$$

UV: Non-renormalisable

But

Propagator $\sim \frac{1}{k^{2}-G_{N} k^{4}}$

$$
\sim \frac{1}{k^{2}}-\frac{1}{k^{2}-1 / G_{N}}
$$

Massive ghost!!

Massless
graviton

UV: Non-renormalisable

But
Propagator $\sim \frac{1}{k^{2}-G_{N} k^{4}}$

$$
\sim \frac{1}{k^{2}}-\frac{1}{k^{2}-1 / G_{N}}
$$

Massive
ghost!!

Massless
graviton
Usual problem with higher derivatives
(Ostrogradski)

UV: Non-renormalisable

Possible ways out

1)SUSY \longrightarrow SUGRA (helps but not a solution)
2)Lopentz

- Horava-Liftshitz gravity
3)Non-perturbative methods
- Asymptotic safety
4)Path integral
- Wave function of the Universe
- Spin-foams

UV: Non-renormalisable

Possible ways out

4)Canonical quantization (background independent)

- Wheeler-deWitt
- Loop quantum gravity
5)New physics/mathematics
- Algebraic structures (Kac-Moody)
- String theory
- Etc.

6) No quantum mechanics at that scale
