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Hot Big Bang Cosmology

• Comes from combining Standard Model (SM) of high
energy physics with Einstein’ general relativity, and the
assumption that on sufficiently large scales, the universe is
isotropic and homogeneous.

position
independent

Three remarkable predictions (Consequences):
1. Expanding Universe 
2. Cosmic Microwave Background Radiation (CMB)
3. Nucleosynthesis

same in all 
directions



STANDARD MODEL OF HE PHYSICS

Provides excellent description of strong, weak and
electromagnetic interactions.

Based on local gauge symmetry
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QCD - strong interactions
involving ‘colored’ quarks &
gluons

Only ‘color neutral’ states exist in nature

Electromagnetic interactions
mediated by W and Z0 bosons
which have been found



Higgs Boson

Spontaneously symmetry breaking

SU(2)L × U(1)Y −→ U(1)EM → γ (photon)

〈φ〉 ∼ 102GeV(t ∼ 10−10sec)

mh ≈ 125GeV (Discovery on 4 July 2012)

compare to superconductor



• A homogeneous and isotropic universe is described
by the Robertson-Walker metric

where r, φ and θ are ‘comoving’ polar coordinates,
which remain fixed for objects that follow the general
cosmological expansion. 

k is the scalar curvature of 3-space, with k = 0, +1, -1
describing a flat, closed and open universe respectively.
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Geometry of the Universe
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• Friedmann Equation
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• Closed ( Ω > 1 or k = 1)

• Open ( Ω < 1 or k = -1)

• Flat ( Ω = 1 or k = 0)

Image courtesy of NASA:
http://map.gsfc.nasa.gov/universe/uni_shape.html



Solving Friedmann Equations:

• Matter
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Cosmological Problems

• Flatness Problem

Present energy density of the universe is determined to be equal
to its critical value corresponding to a flat universe. This means
that in the early universe

(for a radiation dominated universe)t
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How does this come about?
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Horizon Problem

Why the CMB is so uniform on large scales?

Image courtesy of W. Kinney



• Origin of primordial density fluctuation which lead 
to Large Scale Structure and also explain 

 δT/T ~ 10-5

observed by COBE/WMAP and other experiments.

• Origin of baryon asymmetry (nb/nγ ~ 10-10)?



Inflationary Cosmology

[Guth, Linde, Albrecht & Steinhardt, Starobinsky, Mukhanov, Hawking, . . . ]

Successful Primordial Inflation should:

Explain flatness, isotropy;

Provide origin of δT
T ;

Offer testable predictions for ns, r, dns/d ln k;

Recover Hot Big Bang Cosmology;

Explain the observed baryon asymmetry;

Offer plausible CDM candidate;

Physics Beyond the SM?



Cosmic Inflation

• Inflation can be defined as:
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d a decreasing comoving horizon

,0>a&& an accelerated expansion

• Consider a scalar field φ
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Slow rolling scalar field acts as an inflaton

Hteta ≈)(

,3/ρ−<P a negative pressure repulsive gravity

drives inflation

inflation



Tiny patch ~10-28 cm > 1 cm after 60 e-foldings
(time constant ~10-38 sec)

Inflation over radiation dominated universe (hot big bang)

Quantum fluctuations of inflation field give rise to nearly scale 
invariant, adiabatic, Gaussian density perturbations 

Seed for forming large scale structure

Cosmic Inflation
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• Solution to the Flatness Problem ⎟⎟
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• Solution to the Horizon Problem

Image courtesy of W. Kinney



Λ stands for Dark Energy
with Einstein’s cosmological
constant being the leading 
candidate 

( PΛ = wΛ ρΛ, with wΛ = -1 )

CDM denotes ‘cold dark matter’
(particle have tiny velocities)

ΛCDM Model (current paradigm)

cMCDMTotal ρρρρρ ≈++= Λ

412010 Pm−
Λ ≈ρ

Where does ΛCDM come from?
Image courtesy of NASA / WMAP 

Science Team 

Fine tuning?



Slow-roll Inflation

Inflation is driven by some potential V (φ):

Slow-roll parameters:

ε =
m2
p

2

(
V ′

V

)2
, η = m2

p

(
V ′′

V

)
.

The spectral index ns and the tensor to scalar ratio r are
given by

ns − 1 ≡ d ln ∆2
R

d ln k , r ≡ ∆2
h

∆2
R

,

where ∆2
h and ∆2

R are the spectra of primordial gravity waves
and curvature perturbation respectively.

Assuming slow-roll approximation (i.e. (ε, |η|)� 1), the
spectral index ns and the tensor to scalar ratio r are given by

ns ' 1− 6ε+ 2η, r ' 16ε.



The tensor to scalar ratio r can be related to the energy scale
of inflation via

V (φ0)1/4 = 3.3× 1016 r1/4 GeV.

The amplitude of the curvature perturbation is given by

∆2
R = 1

24π2

(
V/m4

p

ε

)
φ=φ0

= 2.43× 10−9 (WMAP7 normalization).

The spectrum of the tensor perturbation is given by

∆2
h = 2

3π2

(
V
m4
P

)
φ=φ0

.

The number of e-folds after the comoving scale l0 = 2π/k0

has crossed the horizon is given by

N0 = 1
m2
p

∫ φ0

φe

(
V
V ′

)
dφ.

Inflation ends when max[ε(φe), |η(φe)|] = 1.



BICEP 2 Result

BICEP 2 a few months ago surprised many people with their
results that r ∼ 0.2 (0.16).

Some tension with the Planck upper bound r < 0.11.

Somewhat earlier WMAP 9 stated that r < 0.13.



WMAP nine year data



Radiatively Corrected φ2 Potential:

ns vs. r for radiatively corrected φ2 potential. The dashed portions are for κ < 0. The one loop
radiative correction is larger than the tree level potential in the portions displayed in gray. N is taken
as 50 (left curves) and 60 (right curves).



Radiatively Corrected φ4 Potential:

ns vs. r for radiatively corrected φ4 potential. The dashed portions are for κ < 0. The one loop
radiative correction is larger than the tree level potential in the portions displayed in gray. N is taken
as 50 (left curves) and 60 (right curves).



Tree Level Gauge Singlet Higgs Inflation

[Kallosh and Linde, 07; Rehman, Shafi and Wickman, 08]

Consider the following Higgs Potential:

V (φ) = V0

[
1−

(
φ
M

)2
]2

←− (tree level)

Here φ is a gauge singlet field.

M

Φ

V HΦL

Above vev HAVL

inflation
Below vev HBVL

inflation

WMAP/Planck data favors BV inflation (r . 0.1).
BUT now BICEP2 may have found r ≈ 0.2.





Coleman–Weinberg Potential:

ns vs. r for Coleman–Weinberg potential. The dashed portions are for φ > v. N is taken as 50 (left
curves) and 60 (right curves).



Quartic Inflation with non-minimal coupling to
gravity

We consider a quartic inflaton potential with a non-minimal
gravitational coupling.

The basic action of non-minimal φ4 inflation is given in the
Jordan frame

The inflation potential in the Einstein frame is



Quartic Inflation with non-minimal coupling to
gravity



the inflaton field at the pivot scale !0 remains below the
position of the hilltop in the WMAP 1-" region. In this
paper we mainly restrict our discussion to the WMAP 1-"
bounds.

For # ! 0 and in the limit # ! 1, the tree level predic-
tions of minimal !4 inflation are modified as follows [21]:

ns ’ 1" 3ð1þ 16#N0=3Þ
N0ð1þ 8#N0Þ

; (24)

r ’ 16

N0ð1þ 8#N0Þ
; (25)

dns
d lnk

’ " 3ð1þ 4ð8#N0Þ=3" 5ð8#N0Þ2 " 2ð8#N0Þ3Þ
N2

0ð1þ 8#N0Þ4

þ r

2

!
16r

3
" ð1" nsÞ

"
: (26)

These results exhibit a reduction in the value of r and an
increase in the value of ns as can be seen in Figs. 1–3. In

particular, from the WMAP 1-" bounds (r& 0:1 and ns &
0:96), we obtain a lower bound of # * 3' 10"3 with
N0 ¼ 60 e-foldings [2,21]. The tree level prediction for
dns
d lnk receives only a tiny correction in this case. Note the
sharp transitions in the predictions of ns and r in the
vicinity of # ) 10"2. This can be understood from the
expression for the inflationary potential given in Eq. (8),
(24), and (25).
In order to discuss nonminimal!4 inflation for # * 1, it

is useful to define the dimensionless field variable c +ffiffiffi
#

p
!=mP. With #, c * 1, the tree level predictions for ns,

r and dns
d lnk are given by

ns ’ 1" 8

3c 2 ¼ 1" 2

N0
; (27)

r ’ 64

3c 4 ¼
12

N2
0

; (28)
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FIG. 5 (color online). r vs ns (first row) and ns and r vs log10ð#Þ (second row) for tree level ($ ¼ 0) nonminimal!4 inflation with the
number of e-foldings N0 ¼ 50 (red dashed curve) and N0 ¼ 60 (green solid curve). The WMAP 1-" (68% confidence level) bounds
are shown in yellow.
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Standard Model Higgs Inflation?
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Figure 2. Upper: RG evolution of λ (left) and of βλ (right) varying Mt, α3(MZ), Mh by

±3σ. Lower: same as above, with more “physical” normalisations. The Higgs quartic coupling

is compared with the top Yukawa and weak gauge coupling through the ratios sign(λ)
√

4|λ|/yt

and sign(λ)
√

8|λ|/g2, which correspond to the ratios of running masses mh/mt and mh/mW , re-

spectively (left). The Higgs quartic β-function is shown in units of its top contribution, βλ(top

contribution) = −3y4
t /8π2 (right). The grey shadings cover values of the RG scale above the

Planck mass MPl ≈ 1.2 × 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/
√

8π.

left). Indeed, λ is the only SM coupling that is allowed to change sign during the RG

evolution because it is not multiplicatively renormalised. For all other SM couplings, the

β functions are proportional to their respective couplings and crossing zero is not possible.

This corresponds to the fact that λ = 0 is not a point of enhanced symmetry.

In figure 2 (lower left) we compare the size of λ with the top Yukawa coupling yt and

the gauge coupling g2, choosing a normalisation such that each coupling is equal to the

corresponding particle mass, up to the same proportionality constant. In other words, we

– 16 –



Supersymmetry

Resolution of the gauge hierarchy problem

Predicts plethora of new particles which LHC should find

Unification of the SM gauge couplings at

MGUT ∼ 2× 1016 GeV

Cold dark matter candidate (LSP)

Radiative electroweak breaking

String theory requires supersymmetry (SUSY)

Alas, SUSY not yet seen at LHC



Why Supersymmetry?
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A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Phys. Lett. B 708, 162 (2012)





Supersymmetric Higgs (Hybrid) Inflation

[Dvali, Shafi, Schaefer; Copeland, Liddle, Lyth, Stewart, Wands ’94]

[Lazarides, Schaefer, Shafi ’97][Senoguz, Shafi ’04; Linde, Riotto ’97]

Attractive scenario in which inflation can be associated with
symmetry breaking G −→ H

Simplest inflation model is based on

W = κS (Φ Φ−M2)

S = gauge singlet superfield, (Φ ,Φ) belong to suitable
representation of G

Need Φ ,Φ pair in order to preserve SUSY while breaking
G −→ H at scale M � TeV, SUSY breaking scale.

R-symmetry

Φ Φ→ Φ Φ, S → eiα S, W → eiαW

⇒ W is a unique renormalizable superpotential



Supersymmetric Higgs (Hybrid) Inflation





Some examples of gauge groups:

G = U(1)B−L, (Supersymmetric superconductor)

G = SU(5)× U(1), (Φ = 10), (Flipped SU(5))

G = 3c × 2L × 2R × 1B−L, (Φ = (1, 1, 2,+1))

G = 4c × 2L × 2R, (Φ = (4, 1, 2)),

G = SO(10), (Φ = 16)



At renormalizable level the SM displays an ‘accidental’ global
U(1)B−L symmetry.

Next let us ‘gauge’ this symmetry, so that U(1)B−L is now
promoted to a local symmetry. In order to cancel the gauge
anomalies, one may introduce 3 SM singlet (right-handed)
neutrinos.

This has several advantages:

See-saw mechanism is automatic and neutrino oscillations can
be understood.



RH neutrinos acquire masses only after U(1)B−L is
spontaneously broken; Neutrino oscillations require that RH
neutrino masses are . 1014GeV.

RH neutrinos can trigger leptogenesis after inflation, which
subsequently gives rise to the observed baryon asymmetry;

Last but not least, the presence of local U(1)B−L symmetry
enables one to explain the origin of Z2 ’matter’ parity of
MSSM. (It is contained in U(1)B−L × U(1)Y , if B − L is
broken by a scalar vev, with the scalar carrying two units of
B − L charge.)



Take into account radiative corrections (because during inflation
V 6= 0 and SUSY is broken by FS = −κM2)

Mass splitting in Φ− Φ

m2
± = κ2 S2 ± κ2M2, m2

F = κ2 S2

One-loop radiative corrections

∆V1loop = 1
64π2 Str[M4(S)(ln M

2(S)
Q2 − 3

2)]

In the inflationary valley (Φ = 0)

V ' κ2M4
(

1 + κ2N
8π2 F (x)

)

where x = |S|/M and

F (x) = 1
4

((
x4 + 1

)
ln

(x4−1)
x4 + 2x2 ln x2+1

x2−1 + 2 ln κ2M2x2

Q2 − 3

)



Full Story

Also include supergravity corrections + soft SUSY breaking terms

The minimal Kähler potential can be expanded as

K = |S|2 + |Φ|2 +
∣∣Φ
∣∣2

The SUGRA scalar potential is given by

VF = eK/m
2
p

(
K−1
ij DziWDz∗j

W ∗ − 3m−2
p |W |2

)

where we have defined

DziW ≡ ∂W
∂zi

+m−2
p

∂K
∂zi
W ; Kij ≡ ∂2K

∂zi∂z∗j

and zi ∈ {Φ,Φ, S, ...}



[Senoguz, Shafi ’04; Jeannerot, Postma ’05]

Take into account sugra corrections, radiative corrections and
soft SUSY breaking terms:

V '
κ2M4

(
1 +

(
M
mp

)4
x4

2 + κ2N
8π2 F (x) + as

(
m3/2x

κM

)
+
(
m3/2x

κM

)2
)

where as = 2 |2−A| cos[argS + arg(2−A)], x = |S|/M and
S � mP .

Note: No ‘η problem’ with minimal (canonical) Kähler potential !



Results

[Pallis, Shafi, 2013; Rehman, Shafi, Wickman, 2010]
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Non-Minimal SUSY Hybrid Inflation and Tensor
Modes

Minimal SUSY hybrid inflation model yields tiny r values
. 10−10

A more general analysis with a non-minimal Kähler potential
can lead to larger r-values;

The Kähler potential can be expanded as:

K = |S|2 + |Φ|2 + |Φ|2 + κS
4
|S|4
m2
P

+ κΦ
4
|Φ|4
m2
P

+
κΦ
4
|Φ|4
m2
P

+

κSΦ
|S|2|Φ|2
m2
P

+ κSΦ
|S|2|Φ|2
m2
P

+ κΦΦ
|Φ|2|Φ|2
m2
P

+ κSS
6
|S|6
m4
P

+ · · · ,



The scalar potential becomes

V ' κ2M4

(
1− κS

(
M

mP

)2

x2 + γS

(
M

mP

)4 x4

2
+

κ2N
8π2

F (x) + a
(m3/2 x

κM

)
+

(
MS x

κM

)2
)

with (leading order) non-minimal Kähler, SUGRA, radiative, and
soft SUSY-breaking corrections, and where

γS ≡ 1− 7

2
κS + 2κ2

S − 3κSS
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While radiative corrections are subdominant at large r, they play a
crucial role in limiting the size of r. This limiting behavior comes
in indirectly via the number of e-foldings N0.



Summary

If r lies close to 0.15, with ns around 0.96, then chaotic
inflation with φ2 potential is an especially simple scenario.
However, transplanckian field values remain a concern.

If r ∼ 0.1− 0.05, then inflation models based on the Higgs /
Coleman-Weinberg potentials can provide simple / realistic
frameworks for inflation.

If r ≤ 0.01, then supersymmetric hybrid inflation models are
especially interesting. These work with inflaton field values
below MPlanck, and supergravity corrections are under control.
The simplest versions employ TeV scale SUSY, and hopefully
LHC 14 will find it.


