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OUTLINE OF LECTURES

• EWSB, the Higgs, and the Hierarchy Problem

• Solutions and non-solutions of the Hierarchy Problem

• Supersymmetry

• Supersymmetry and the Higgs

• Where are we and where do we go from here?



WHAT WAS/IS THE GOAL OF 
THE LHC?



TO FIND THE MECHANISM 
THAT CAUSES EWSB
SU(3)⇥ SU(2)⇥ U(1)

SU(3)⇥ U(1)EM

Necessary because 
of W,Z masses and
we knew the scale

ahead of time

How do we accomplish this?



GAUGE BOSON MASSES
• Want

• This breaks gauge invariance... bad!

• We do this in a gauge invariant way with our favorite field...

⇠ M2WµW
µ

(Dµ�)2 � �2WµW
µ

Gauge Invariant
Looks like a mass if    has a VEV�



HIGGS POTENTIAL

V (�) ⇠ µ2�2 + ��4

h�i ⌘ v ⇠
r

µ2

�
mh ⇠ µ

COMPLETELY ARBITRARY, but it works better than it 
should, it just doesn’t predict the mass (or VEV)…



SO WASN’T THE LHC JUST 
FINDING THE MASS OF THE HIGGS?



IT DIDN’T HAVE TO BE A 
HIGGS!

EWSB occurs in the SM without a Higgs!



GB MASSES AND 
LONGITUDINAL MODES

• Higgs not only gives a mass to the W,Z but also provides extra needed 
degrees of freedom

• Can describe the other “modes” using a linear/non-linear sigma model 
description

• Let’s look at a Global U(1) with a complex scalar Higgs example:
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LONGITUDINAL MODES

• Higgs not only gives a mass to the W,Z but also provides extra needed 
degrees of freedom

• Can describe the other “modes” using a linear/non-linear sigma model 
description

• Let’s look at a Global U(1) with a complex scalar Higgs example:

1.3(iii) Spontaneously Massive Fermion → Nambu-Goldstone Boson

Through a sleight of hand, however, we can preserve the full U(1)L × U(1)R chiral
symmetry, and still give the fermion a mass! We introduce a complex scalar field Φ
with a Yukawa coupling (g) to the fermion. We assume that Φ transforms under the
U(1)L × U(1)R chiral symmetry as:

Φ → exp[−i(θ − ω)]Φ (1.9)

that is, Φ has nonzero charges under both the U(1)L and U(1)R symmetry groups. Then,
we write the Lagrangian of the system as:

L = ψ̄Li∂/ψL + ψ̄Ri∂/ψR − g(ψ̄LψRΦ + ψ̄RψLΦ∗) + LΦ (1.10)

where
LΦ = |∂Φ|2 − V (|Φ|) (1.11)

Unlike the previous case where we added the fermion mass term and broke the symmetry
of the Lagrangian, L remains invariant under the full U(1)L × U(1)R chiral symmetry
transformations. The vector current remains the same as in the pure fermion case, but
the axial current is now changed to:

j5
µ = ψ̄γµγ5ψ + 2iΦ∗(

→
∂µ −

←
∂µ)Φ (1.12)

We can now arrange to have a “spontaneous breaking of the chiral symmetry” to give
mass to the fermion. Assume the potential for the field Φ is:

V (Φ) = −M2|Φ|2 + 1
2λ|Φ|

4 (1.13)

The vacuum built around the field configuration ⟨Φ⟩ = 0 is unstable. Therefore, let us
ask that ⟨Φ⟩ = v/

√
2, and without loss of generality we can take v real. The potential

energy is minimized for:
v√
2

=
M√
λ

(1.14)

We can parameterize the “small oscillations” around the vacuum state by writing:

Φ =
1√
2
(v + h(x)) exp(iφ(x)/f) (1.15)

where φ(x) and h(x) are real fields. Substituting this anzatz into the scalar Lagrangian
(1.11) we obtain:

LΦ = 1
2(∂h)2 − M2h2 −

√
λ

2
Mh3 −

1

8
λh4

+
v2

2f 2
(∂φ)2 +

1

2f 2
h2(∂φ)2 +

√
2M

λf 2
h(∂φ)2 + Λ (1.16)
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Unstable
Actual Minima

1.3(iii) Spontaneously Massive Fermion → Nambu-Goldstone Boson

Through a sleight of hand, however, we can preserve the full U(1)L × U(1)R chiral
symmetry, and still give the fermion a mass! We introduce a complex scalar field Φ
with a Yukawa coupling (g) to the fermion. We assume that Φ transforms under the
U(1)L × U(1)R chiral symmetry as:

Φ → exp[−i(θ − ω)]Φ (1.9)

that is, Φ has nonzero charges under both the U(1)L and U(1)R symmetry groups. Then,
we write the Lagrangian of the system as:

L = ψ̄Li∂/ψL + ψ̄Ri∂/ψR − g(ψ̄LψRΦ + ψ̄RψLΦ∗) + LΦ (1.10)

where
LΦ = |∂Φ|2 − V (|Φ|) (1.11)

Unlike the previous case where we added the fermion mass term and broke the symmetry
of the Lagrangian, L remains invariant under the full U(1)L × U(1)R chiral symmetry
transformations. The vector current remains the same as in the pure fermion case, but
the axial current is now changed to:

j5
µ = ψ̄γµγ5ψ + 2iΦ∗(

→
∂µ −

←
∂µ)Φ (1.12)

We can now arrange to have a “spontaneous breaking of the chiral symmetry” to give
mass to the fermion. Assume the potential for the field Φ is:

V (Φ) = −M2|Φ|2 + 1
2λ|Φ|

4 (1.13)

The vacuum built around the field configuration ⟨Φ⟩ = 0 is unstable. Therefore, let us
ask that ⟨Φ⟩ = v/

√
2, and without loss of generality we can take v real. The potential

energy is minimized for:
v√
2

=
M√
λ

(1.14)

We can parameterize the “small oscillations” around the vacuum state by writing:

Φ =
1√
2
(v + h(x)) exp(iφ(x)/f) (1.15)

where φ(x) and h(x) are real fields. Substituting this anzatz into the scalar Lagrangian
(1.11) we obtain:

LΦ = 1
2(∂h)2 − M2h2 −

√
λ

2
Mh3 −

1

8
λh4

+
v2

2f 2
(∂φ)2 +

1

2f 2
h2(∂φ)2 +

√
2M

λf 2
h(∂φ)2 + Λ (1.16)

10



GB MASSES AND 
LONGITUDINAL MODES

• Higgs not only gives a mass to the W,Z but also provides extra needed 
degrees of freedom

• Can describe the other “modes” using a linear/non-linear sigma model 
description

• Let’s look at a Global U(1) with a complex scalar Higgs example:

1.3(iii) Spontaneously Massive Fermion → Nambu-Goldstone Boson

Through a sleight of hand, however, we can preserve the full U(1)L × U(1)R chiral
symmetry, and still give the fermion a mass! We introduce a complex scalar field Φ
with a Yukawa coupling (g) to the fermion. We assume that Φ transforms under the
U(1)L × U(1)R chiral symmetry as:

Φ → exp[−i(θ − ω)]Φ (1.9)

that is, Φ has nonzero charges under both the U(1)L and U(1)R symmetry groups. Then,
we write the Lagrangian of the system as:

L = ψ̄Li∂/ψL + ψ̄Ri∂/ψR − g(ψ̄LψRΦ + ψ̄RψLΦ∗) + LΦ (1.10)

where
LΦ = |∂Φ|2 − V (|Φ|) (1.11)

Unlike the previous case where we added the fermion mass term and broke the symmetry
of the Lagrangian, L remains invariant under the full U(1)L × U(1)R chiral symmetry
transformations. The vector current remains the same as in the pure fermion case, but
the axial current is now changed to:

j5
µ = ψ̄γµγ5ψ + 2iΦ∗(

→
∂µ −

←
∂µ)Φ (1.12)

We can now arrange to have a “spontaneous breaking of the chiral symmetry” to give
mass to the fermion. Assume the potential for the field Φ is:

V (Φ) = −M2|Φ|2 + 1
2λ|Φ|

4 (1.13)

The vacuum built around the field configuration ⟨Φ⟩ = 0 is unstable. Therefore, let us
ask that ⟨Φ⟩ = v/

√
2, and without loss of generality we can take v real. The potential

energy is minimized for:
v√
2

=
M√
λ

(1.14)

We can parameterize the “small oscillations” around the vacuum state by writing:

Φ =
1√
2
(v + h(x)) exp(iφ(x)/f) (1.15)

where φ(x) and h(x) are real fields. Substituting this anzatz into the scalar Lagrangian
(1.11) we obtain:

LΦ = 1
2(∂h)2 − M2h2 −

√
λ

2
Mh3 −

1

8
λh4

+
v2

2f 2
(∂φ)2 +

1

2f 2
h2(∂φ)2 +

√
2M

λf 2
h(∂φ)2 + Λ (1.16)

10

1.3(iii) Spontaneously Massive Fermion → Nambu-Goldstone Boson

Through a sleight of hand, however, we can preserve the full U(1)L × U(1)R chiral
symmetry, and still give the fermion a mass! We introduce a complex scalar field Φ
with a Yukawa coupling (g) to the fermion. We assume that Φ transforms under the
U(1)L × U(1)R chiral symmetry as:

Φ → exp[−i(θ − ω)]Φ (1.9)

that is, Φ has nonzero charges under both the U(1)L and U(1)R symmetry groups. Then,
we write the Lagrangian of the system as:

L = ψ̄Li∂/ψL + ψ̄Ri∂/ψR − g(ψ̄LψRΦ + ψ̄RψLΦ∗) + LΦ (1.10)

where
LΦ = |∂Φ|2 − V (|Φ|) (1.11)

Unlike the previous case where we added the fermion mass term and broke the symmetry
of the Lagrangian, L remains invariant under the full U(1)L × U(1)R chiral symmetry
transformations. The vector current remains the same as in the pure fermion case, but
the axial current is now changed to:

j5
µ = ψ̄γµγ5ψ + 2iΦ∗(

→
∂µ −

←
∂µ)Φ (1.12)

We can now arrange to have a “spontaneous breaking of the chiral symmetry” to give
mass to the fermion. Assume the potential for the field Φ is:

V (Φ) = −M2|Φ|2 + 1
2λ|Φ|

4 (1.13)

The vacuum built around the field configuration ⟨Φ⟩ = 0 is unstable. Therefore, let us
ask that ⟨Φ⟩ = v/

√
2, and without loss of generality we can take v real. The potential

energy is minimized for:
v√
2

=
M√
λ

(1.14)

We can parameterize the “small oscillations” around the vacuum state by writing:

Φ =
1√
2
(v + h(x)) exp(iφ(x)/f) (1.15)

where φ(x) and h(x) are real fields. Substituting this anzatz into the scalar Lagrangian
(1.11) we obtain:

LΦ = 1
2(∂h)2 − M2h2 −

√
λ

2
Mh3 −

1

8
λh4

+
v2

2f 2
(∂φ)2 +

1

2f 2
h2(∂φ)2 +

√
2M

λf 2
h(∂φ)2 + Λ (1.16)

10

1.3(iii) Spontaneously Massive Fermion → Nambu-Goldstone Boson

Through a sleight of hand, however, we can preserve the full U(1)L × U(1)R chiral
symmetry, and still give the fermion a mass! We introduce a complex scalar field Φ
with a Yukawa coupling (g) to the fermion. We assume that Φ transforms under the
U(1)L × U(1)R chiral symmetry as:

Φ → exp[−i(θ − ω)]Φ (1.9)

that is, Φ has nonzero charges under both the U(1)L and U(1)R symmetry groups. Then,
we write the Lagrangian of the system as:

L = ψ̄Li∂/ψL + ψ̄Ri∂/ψR − g(ψ̄LψRΦ + ψ̄RψLΦ∗) + LΦ (1.10)

where
LΦ = |∂Φ|2 − V (|Φ|) (1.11)

Unlike the previous case where we added the fermion mass term and broke the symmetry
of the Lagrangian, L remains invariant under the full U(1)L × U(1)R chiral symmetry
transformations. The vector current remains the same as in the pure fermion case, but
the axial current is now changed to:

j5
µ = ψ̄γµγ5ψ + 2iΦ∗(

→
∂µ −

←
∂µ)Φ (1.12)

We can now arrange to have a “spontaneous breaking of the chiral symmetry” to give
mass to the fermion. Assume the potential for the field Φ is:

V (Φ) = −M2|Φ|2 + 1
2λ|Φ|

4 (1.13)

The vacuum built around the field configuration ⟨Φ⟩ = 0 is unstable. Therefore, let us
ask that ⟨Φ⟩ = v/

√
2, and without loss of generality we can take v real. The potential

energy is minimized for:
v√
2

=
M√
λ

(1.14)

We can parameterize the “small oscillations” around the vacuum state by writing:

Φ =
1√
2
(v + h(x)) exp(iφ(x)/f) (1.15)

where φ(x) and h(x) are real fields. Substituting this anzatz into the scalar Lagrangian
(1.11) we obtain:

LΦ = 1
2(∂h)2 − M2h2 −

√
λ

2
Mh3 −

1

8
λh4

+
v2

2f 2
(∂φ)2 +

1

2f 2
h2(∂φ)2 +

√
2M

λf 2
h(∂φ)2 + Λ (1.16)

10

1.3(iii) Spontaneously Massive Fermion → Nambu-Goldstone Boson

Through a sleight of hand, however, we can preserve the full U(1)L × U(1)R chiral
symmetry, and still give the fermion a mass! We introduce a complex scalar field Φ
with a Yukawa coupling (g) to the fermion. We assume that Φ transforms under the
U(1)L × U(1)R chiral symmetry as:

Φ → exp[−i(θ − ω)]Φ (1.9)

that is, Φ has nonzero charges under both the U(1)L and U(1)R symmetry groups. Then,
we write the Lagrangian of the system as:

L = ψ̄Li∂/ψL + ψ̄Ri∂/ψR − g(ψ̄LψRΦ + ψ̄RψLΦ∗) + LΦ (1.10)

where
LΦ = |∂Φ|2 − V (|Φ|) (1.11)

Unlike the previous case where we added the fermion mass term and broke the symmetry
of the Lagrangian, L remains invariant under the full U(1)L × U(1)R chiral symmetry
transformations. The vector current remains the same as in the pure fermion case, but
the axial current is now changed to:

j5
µ = ψ̄γµγ5ψ + 2iΦ∗(

→
∂µ −

←
∂µ)Φ (1.12)

We can now arrange to have a “spontaneous breaking of the chiral symmetry” to give
mass to the fermion. Assume the potential for the field Φ is:

V (Φ) = −M2|Φ|2 + 1
2λ|Φ|

4 (1.13)

The vacuum built around the field configuration ⟨Φ⟩ = 0 is unstable. Therefore, let us
ask that ⟨Φ⟩ = v/

√
2, and without loss of generality we can take v real. The potential

energy is minimized for:
v√
2

=
M√
λ

(1.14)

We can parameterize the “small oscillations” around the vacuum state by writing:

Φ =
1√
2
(v + h(x)) exp(iφ(x)/f) (1.15)

where φ(x) and h(x) are real fields. Substituting this anzatz into the scalar Lagrangian
(1.11) we obtain:

LΦ = 1
2(∂h)2 − M2h2 −

√
λ

2
Mh3 −

1

8
λh4

+
v2

2f 2
(∂φ)2 +

1

2f 2
h2(∂φ)2 +

√
2M

λf 2
h(∂φ)2 + Λ (1.16)

10

Unstable
Actual Minima

1.3(iii) Spontaneously Massive Fermion → Nambu-Goldstone Boson

Through a sleight of hand, however, we can preserve the full U(1)L × U(1)R chiral
symmetry, and still give the fermion a mass! We introduce a complex scalar field Φ
with a Yukawa coupling (g) to the fermion. We assume that Φ transforms under the
U(1)L × U(1)R chiral symmetry as:

Φ → exp[−i(θ − ω)]Φ (1.9)

that is, Φ has nonzero charges under both the U(1)L and U(1)R symmetry groups. Then,
we write the Lagrangian of the system as:

L = ψ̄Li∂/ψL + ψ̄Ri∂/ψR − g(ψ̄LψRΦ + ψ̄RψLΦ∗) + LΦ (1.10)

where
LΦ = |∂Φ|2 − V (|Φ|) (1.11)

Unlike the previous case where we added the fermion mass term and broke the symmetry
of the Lagrangian, L remains invariant under the full U(1)L × U(1)R chiral symmetry
transformations. The vector current remains the same as in the pure fermion case, but
the axial current is now changed to:

j5
µ = ψ̄γµγ5ψ + 2iΦ∗(

→
∂µ −

←
∂µ)Φ (1.12)

We can now arrange to have a “spontaneous breaking of the chiral symmetry” to give
mass to the fermion. Assume the potential for the field Φ is:

V (Φ) = −M2|Φ|2 + 1
2λ|Φ|

4 (1.13)

The vacuum built around the field configuration ⟨Φ⟩ = 0 is unstable. Therefore, let us
ask that ⟨Φ⟩ = v/

√
2, and without loss of generality we can take v real. The potential

energy is minimized for:
v√
2

=
M√
λ

(1.14)

We can parameterize the “small oscillations” around the vacuum state by writing:

Φ =
1√
2
(v + h(x)) exp(iφ(x)/f) (1.15)

where φ(x) and h(x) are real fields. Substituting this anzatz into the scalar Lagrangian
(1.11) we obtain:

LΦ = 1
2(∂h)2 − M2h2 −

√
λ

2
Mh3 −

1

8
λh4

+
v2

2f 2
(∂φ)2 +

1

2f 2
h2(∂φ)2 +

√
2M

λf 2
h(∂φ)2 + Λ (1.16)

10

1.3(iii) Spontaneously Massive Fermion → Nambu-Goldstone Boson

Through a sleight of hand, however, we can preserve the full U(1)L × U(1)R chiral
symmetry, and still give the fermion a mass! We introduce a complex scalar field Φ
with a Yukawa coupling (g) to the fermion. We assume that Φ transforms under the
U(1)L × U(1)R chiral symmetry as:

Φ → exp[−i(θ − ω)]Φ (1.9)

that is, Φ has nonzero charges under both the U(1)L and U(1)R symmetry groups. Then,
we write the Lagrangian of the system as:

L = ψ̄Li∂/ψL + ψ̄Ri∂/ψR − g(ψ̄LψRΦ + ψ̄RψLΦ∗) + LΦ (1.10)

where
LΦ = |∂Φ|2 − V (|Φ|) (1.11)

Unlike the previous case where we added the fermion mass term and broke the symmetry
of the Lagrangian, L remains invariant under the full U(1)L × U(1)R chiral symmetry
transformations. The vector current remains the same as in the pure fermion case, but
the axial current is now changed to:

j5
µ = ψ̄γµγ5ψ + 2iΦ∗(

→
∂µ −

←
∂µ)Φ (1.12)

We can now arrange to have a “spontaneous breaking of the chiral symmetry” to give
mass to the fermion. Assume the potential for the field Φ is:

V (Φ) = −M2|Φ|2 + 1
2λ|Φ|

4 (1.13)

The vacuum built around the field configuration ⟨Φ⟩ = 0 is unstable. Therefore, let us
ask that ⟨Φ⟩ = v/

√
2, and without loss of generality we can take v real. The potential

energy is minimized for:
v√
2

=
M√
λ

(1.14)

We can parameterize the “small oscillations” around the vacuum state by writing:

Φ =
1√
2
(v + h(x)) exp(iφ(x)/f) (1.15)

where φ(x) and h(x) are real fields. Substituting this anzatz into the scalar Lagrangian
(1.11) we obtain:

LΦ = 1
2(∂h)2 − M2h2 −

√
λ

2
Mh3 −

1

8
λh4

+
v2

2f 2
(∂φ)2 +

1

2f 2
h2(∂φ)2 +

√
2M

λf 2
h(∂φ)2 + Λ (1.16)

10

Expand around our true 
vacuum “Decay” constant



GB MASSES AND 
LONGITUDINAL MODES

• Expand in our parametrization for small oscillations
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Decouple h

Non-linear Sigma Model Limit

where we have a negative vacuum energy density, or cosmological constant, Λ = −M4/2λ
(of course, we can always add a bare cosmological constant to have any arbitrary vacuum
energy we wish).

We see that φ(x) is a massless field (a Nambu–Goldstone mode). It couples only
derivatively to other fields because of the symmetry φ → φ + ξ.4 The field h(x), on
the other hand, has a positive mass-squared of m2 = 2M2. The proper normalization of
the kinetic term, for φ, i.e., (v2/2f 2)(∂φ)2, requires that f = v. Again, f is the decay
constant of the pion–like object φ. The decay constant f is always equivalent to the
vacuum expectation value (apart from a possible conventional factor like

√
2).

Notice that the mass of h(x) can be formally taken to be arbitrarily large, i.e., by taking
the limit M → ∞, and λ → ∞ we can hold v2 = f 2 = 2M2/λ fixed. This completely
suppresses fluctuations in the h field, and leaves us with a nonlinear σ model [3]. In
this case only the Nambu-Goldstone φ field is relevant at low energies. In the nonlinear
σ model we can directly parameterize Φ = (f/

√
2) exp(iφ/f). The axial current then

becomes:
j5
µ = ψγµγ

5ψ − 2f∂µφ (1.17)

where the factor of 2 in the last term stems from the axial charge 2 of Φ (eq.(1.9)). Let
us substitute this into the Lagrangian eq.(1.10) containing the fermions:

L = ψ̄Li∂/ψL + ψ̄Ri∂/ψR + 1
2(∂φ)2 − (gf/

√
2)(ψ̄LψReiφ/v + ψ̄RψLe−iφ/f) (1.18)

If we expand in powers of φ/f we obtain:

L = ψ̄i∂/ψ + ψ̄i∂/ψ + 1
2(∂φ)2 − (gf/

√
2)ψ̄ψ − i(g/

√
2)φψ̄γ5ψ + ... (1.19)

We see that this Lagrangian describes a Dirac fermion of mass m = gf/
√

2, and a mass-
less pseudoscalar Nambu-Goldstone boson φ, which is coupled to iψ̄γ5ψ with coupling
strength g =

√
2m/f . This last result is the “unrenormalized Goldberger-Treiman rela-

tion” [33]. The Goldberger-Treiman relation holds experimentally in QCD for the axial
coupling constant of the pion gA and the nucleon, with m = mN , f = fπ, and is one of
the indications that the pion is a Nambu-Goldstone boson. The Nambu-Goldstone phe-
nomenon is ubiquitous throughout the physical world, including spin-waves, water-waves,
and waves on an infinite stretched rope.

1.3(iv) Massive Photon → Eaten Nambu-Goldstone Boson

We now consider what happens if Φ is a charged scalar field, with charge e, coupled
in a gauge invariant way to a vector potential. Let us “switch off” the fermions for the
present. We construct the following Lagrangian:

L′Φ = −
1

4
FµνF

µν + |(i∂µ − eAµ)Φ|2 − V (Φ) (1.20)

4This is a general feature of a Nambu–Goldstone mode, and implies “Adler decoupling”: any NGB
emission amplitude tends to zero as the NGB four–momentum is taken to zero.
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Can do the same exercise for SM Higgs Potential

Goldstone Boson “pion” modes 

These rules follow from the NJL approximation with the identification m0 ∼ M ∼ ΛQCD.
When we discuss TC models we will use the notation, FT , to refer to the corresponding
NGB, or technipion, decay constant.

We typically refer to the weak scale vweak = 2−3/4G−1/2
F = 175 GeV, which is related to

the usual Higgs VEV as vweak = v0/
√

2, and v0 = 246 GeV. Hence, in the spontaneously
broken phase of the Standard Model we can parameterize the Higgs field with its VEV
as:

H = exp(iπaτa/v0)

(
v0/

√
2 + h0/

√
2

0

)

. (2.31)

This gives the kinetic terms for the πa (and h0) the proper canonical normalizations in the
limit of switching off the gauge fields. ¿From the Higgs boson’s kinetic terms we extract,
where the electroweak covariant derivative Dµ is defined in eq.(A.1):

DµH
†DµH →

g2

2
v0W

+
µ ∂

µπ− +
g2

2
v0W

−
µ ∂

µπ+ + v0(
g2

2
W 0

µ +
g1

2
Bµ)∂µπ0 + ... (2.32)

Now, in QCD fπ is defined by:

< 0|ja5
µ |πb >= ifπpµδab Fπ ≈ 93 MeV (2.33)

where ja5
µ = ψγµγ5 τa

2 ψ where ψ = (u, d) in QCD (Note: another definition in common

use involves the matrix elements of the charged currents and differs by a factor of
√

2,
i.e., Fπ =

√
2fπ). When pions (Nambu-Goldstone bosons) or technipions are introduced

through chiral Lagrangians, we have typically a nonlinear-σ model field U that transforms
under GL × GR as U → LUR†, and its kinetic term is of the form:

U = exp(iπaτa/f) L =
f 2

4
Tr(∂µU †∂µU) (2.34)

Then the normalization is f = fπ = 93 MeV, which can be seen by working out the axial
current, j5

µ = δL/δ∂µπa and comparing with eq.(2.33).

We will similarly define FT as the techni-pion, π̃, to vacuum matrix element for the
corresponding techniquark axial current, involving a single doublet of techniquarks, in TC
models, i.e., j̃a5

µ = Qγµγ5 τa

2 Q where Q = (T, B) are techniquarks:

< 0|j̃a5
µ |π̃b >= iFT pµδab FT ∝ vweak (2.35)

Including electroweak gauge interactions the techniquark kinetic terms take the form:

QLiD/ QL + QRiD/ QR −→
F 2

T

4
Tr((DµU)†(DµU)) (2.36)

where Dµ is defined in eq.(A.1). We have also written the corresponding chiral Lagrangian
describing the technipions with a nonlinear-σ model, or chiral field U = exp(iπaτa/FT )
(in the chiral Lagrangian the left-handed electroweak generators act on the left side of U ,
while vectorial generators act on both left and right, and are commutators with U). We
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as:

H = exp(iπaτa/v0)

(
v0/

√
2 + h0/

√
2

0

)

. (2.31)

This gives the kinetic terms for the πa (and h0) the proper canonical normalizations in the
limit of switching off the gauge fields. ¿From the Higgs boson’s kinetic terms we extract,
where the electroweak covariant derivative Dµ is defined in eq.(A.1):

DµH
†DµH →

g2

2
v0W

+
µ ∂

µπ− +
g2

2
v0W

−
µ ∂

µπ+ + v0(
g2

2
W 0

µ +
g1

2
Bµ)∂µπ0 + ... (2.32)

Now, in QCD fπ is defined by:

< 0|ja5
µ |πb >= ifπpµδab Fπ ≈ 93 MeV (2.33)

where ja5
µ = ψγµγ5 τa

2 ψ where ψ = (u, d) in QCD (Note: another definition in common

use involves the matrix elements of the charged currents and differs by a factor of
√

2,
i.e., Fπ =

√
2fπ). When pions (Nambu-Goldstone bosons) or technipions are introduced

through chiral Lagrangians, we have typically a nonlinear-σ model field U that transforms
under GL × GR as U → LUR†, and its kinetic term is of the form:

U = exp(iπaτa/f) L =
f 2

4
Tr(∂µU †∂µU) (2.34)

Then the normalization is f = fπ = 93 MeV, which can be seen by working out the axial
current, j5

µ = δL/δ∂µπa and comparing with eq.(2.33).

We will similarly define FT as the techni-pion, π̃, to vacuum matrix element for the
corresponding techniquark axial current, involving a single doublet of techniquarks, in TC
models, i.e., j̃a5

µ = Qγµγ5 τa

2 Q where Q = (T, B) are techniquarks:

< 0|j̃a5
µ |π̃b >= iFT pµδab FT ∝ vweak (2.35)

Including electroweak gauge interactions the techniquark kinetic terms take the form:

QLiD/ QL + QRiD/ QR −→
F 2

T

4
Tr((DµU)†(DµU)) (2.36)

where Dµ is defined in eq.(A.1). We have also written the corresponding chiral Lagrangian
describing the technipions with a nonlinear-σ model, or chiral field U = exp(iπaτa/FT )
(in the chiral Lagrangian the left-handed electroweak generators act on the left side of U ,
while vectorial generators act on both left and right, and are commutators with U). We
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Confinement and Chiral Symmetry Breaking 

causes EWSB as well!
hQ̄lqRi ⇠ ⇤3

QCD

Color invariant, but not SU(2)!

What about W,Z masses??

Q̄�µDµQ This doesn’t look like a gauge boson mass term?

Go back to our “Goldstone” parametrization
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4
(DµU)†(DµU)

Longitudinal mode of W,Z come from pions!

These rules follow from the NJL approximation with the identification m0 ∼ M ∼ ΛQCD.
When we discuss TC models we will use the notation, FT , to refer to the corresponding
NGB, or technipion, decay constant.

We typically refer to the weak scale vweak = 2−3/4G−1/2
F = 175 GeV, which is related to

the usual Higgs VEV as vweak = v0/
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2, and v0 = 246 GeV. Hence, in the spontaneously
broken phase of the Standard Model we can parameterize the Higgs field with its VEV
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This gives the kinetic terms for the πa (and h0) the proper canonical normalizations in the
limit of switching off the gauge fields. ¿From the Higgs boson’s kinetic terms we extract,
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where ja5
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under GL × GR as U → LUR†, and its kinetic term is of the form:

U = exp(iπaτa/f) L =
f 2

4
Tr(∂µU †∂µU) (2.34)

Then the normalization is f = fπ = 93 MeV, which can be seen by working out the axial
current, j5

µ = δL/δ∂µπa and comparing with eq.(2.33).

We will similarly define FT as the techni-pion, π̃, to vacuum matrix element for the
corresponding techniquark axial current, involving a single doublet of techniquarks, in TC
models, i.e., j̃a5

µ = Qγµγ5 τa

2 Q where Q = (T, B) are techniquarks:

< 0|j̃a5
µ |π̃b >= iFT pµδab FT ∝ vweak (2.35)

Including electroweak gauge interactions the techniquark kinetic terms take the form:

QLiD/ QL + QRiD/ QR −→
F 2

T

4
Tr((DµU)†(DµU)) (2.36)

where Dµ is defined in eq.(A.1). We have also written the corresponding chiral Lagrangian
describing the technipions with a nonlinear-σ model, or chiral field U = exp(iπaτa/FT )
(in the chiral Lagrangian the left-handed electroweak generators act on the left side of U ,
while vectorial generators act on both left and right, and are commutators with U). We
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use involves the matrix elements of the charged currents and differs by a factor of
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2fπ). When pions (Nambu-Goldstone bosons) or technipions are introduced

through chiral Lagrangians, we have typically a nonlinear-σ model field U that transforms
under GL × GR as U → LUR†, and its kinetic term is of the form:

U = exp(iπaτa/f) L =
f 2

4
Tr(∂µU †∂µU) (2.34)

Then the normalization is f = fπ = 93 MeV, which can be seen by working out the axial
current, j5

µ = δL/δ∂µπa and comparing with eq.(2.33).

We will similarly define FT as the techni-pion, π̃, to vacuum matrix element for the
corresponding techniquark axial current, involving a single doublet of techniquarks, in TC
models, i.e., j̃a5

µ = Qγµγ5 τa

2 Q where Q = (T, B) are techniquarks:

< 0|j̃a5
µ |π̃b >= iFT pµδab FT ∝ vweak (2.35)

Including electroweak gauge interactions the techniquark kinetic terms take the form:

QLiD/ QL + QRiD/ QR −→
F 2

T

4
Tr((DµU)†(DµU)) (2.36)

where Dµ is defined in eq.(A.1). We have also written the corresponding chiral Lagrangian
describing the technipions with a nonlinear-σ model, or chiral field U = exp(iπaτa/FT )
(in the chiral Lagrangian the left-handed electroweak generators act on the left side of U ,
while vectorial generators act on both left and right, and are commutators with U). We
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U = exp(iπaτa/f) L =
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4
Tr(∂µU †∂µU) (2.34)

Then the normalization is f = fπ = 93 MeV, which can be seen by working out the axial
current, j5

µ = δL/δ∂µπa and comparing with eq.(2.33).

We will similarly define FT as the techni-pion, π̃, to vacuum matrix element for the
corresponding techniquark axial current, involving a single doublet of techniquarks, in TC
models, i.e., j̃a5

µ = Qγµγ5 τa

2 Q where Q = (T, B) are techniquarks:

< 0|j̃a5
µ |π̃b >= iFT pµδab FT ∝ vweak (2.35)

Including electroweak gauge interactions the techniquark kinetic terms take the form:

QLiD/ QL + QRiD/ QR −→
F 2

T

4
Tr((DµU)†(DµU)) (2.36)

where Dµ is defined in eq.(A.1). We have also written the corresponding chiral Lagrangian
describing the technipions with a nonlinear-σ model, or chiral field U = exp(iπaτa/FT )
(in the chiral Lagrangian the left-handed electroweak generators act on the left side of U ,
while vectorial generators act on both left and right, and are commutators with U). We
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These rules follow from the NJL approximation with the identification m0 ∼ M ∼ ΛQCD.
When we discuss TC models we will use the notation, FT , to refer to the corresponding
NGB, or technipion, decay constant.

We typically refer to the weak scale vweak = 2−3/4G−1/2
F = 175 GeV, which is related to

the usual Higgs VEV as vweak = v0/
√

2, and v0 = 246 GeV. Hence, in the spontaneously
broken phase of the Standard Model we can parameterize the Higgs field with its VEV
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Now, in QCD fπ is defined by:

< 0|ja5
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2 ψ where ψ = (u, d) in QCD (Note: another definition in common

use involves the matrix elements of the charged currents and differs by a factor of
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2,
i.e., Fπ =

√
2fπ). When pions (Nambu-Goldstone bosons) or technipions are introduced

through chiral Lagrangians, we have typically a nonlinear-σ model field U that transforms
under GL × GR as U → LUR†, and its kinetic term is of the form:

U = exp(iπaτa/f) L =
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4
Tr(∂µU †∂µU) (2.34)

Then the normalization is f = fπ = 93 MeV, which can be seen by working out the axial
current, j5

µ = δL/δ∂µπa and comparing with eq.(2.33).

We will similarly define FT as the techni-pion, π̃, to vacuum matrix element for the
corresponding techniquark axial current, involving a single doublet of techniquarks, in TC
models, i.e., j̃a5

µ = Qγµγ5 τa

2 Q where Q = (T, B) are techniquarks:

< 0|j̃a5
µ |π̃b >= iFT pµδab FT ∝ vweak (2.35)

Including electroweak gauge interactions the techniquark kinetic terms take the form:

QLiD/ QL + QRiD/ QR −→
F 2

T

4
Tr((DµU)†(DµU)) (2.36)

where Dµ is defined in eq.(A.1). We have also written the corresponding chiral Lagrangian
describing the technipions with a nonlinear-σ model, or chiral field U = exp(iπaτa/FT )
(in the chiral Lagrangian the left-handed electroweak generators act on the left side of U ,
while vectorial generators act on both left and right, and are commutators with U). We
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ACTUAL QCD Pion chiral Lagrangian

mV (QCD) ⇠ f⇡
v
mV

So close!...
mW ,mZ ⇠ 30MeV



STRONG DYNAMICS EWSB

• Nature could have worked this way just with a new confining 
scale

• For instance redo QCD at higher scales - Technicolor

• Nature has broke symmetries this way before, 
superconductors, QCD

• The devil is in the details - Extended Technicolor, Randall-
Sundrum Models (AdS/CFT)



SO IT COULD HAVE BEEN 
ONE OF TWO POSSIBILITIES

EWSB

Strongly
Coupled

Weakly
Coupled

QCD like Higgs Like
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SO IT COULD HAVE BEEN 
ONE OF TWO POSSIBILITIES

EWSB

Strongly
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Weakly
Coupled

QCD like Higgs Like



IS THIS THE END? DO WE KNOW ALL WE 
NEED TO KNOW ABOUT PARTICLE 

PHYSICS?
• Of course not…

• Many unanswered questions

• Dark Matter, Baryogenensis, Flavor, Inflation, Dark 
Energy, etc. 

• BUT… now that we found the Higgs there’s a direct 
problem staring us down: the Hierarchy Problem



THE HIGGS SEEMS SO SIMPLE WHY 
DO PEOPLE LIKE ALTERNATIVES?

• Arbitrary and doesn’t explain anything

• We’ve seen spontaneous symmetry breaking in 
other systems done the same way over and over, 
the Higgs is new

• The Higgs is a really weird object in QFT 



HIGGS POTENTIAL

V (�) ⇠ µ2�2 + ��4

h�i ⌘ v ⇠
r

µ2

�
mh ⇠ µ

Does this potential make sense quantum 
mechanically?



… OF COURSE??



BUT WAIT...

Lots of smart people have thought 
about how QFTs work



QUANTUM CORRECTIONS
• SM is renormalizable, but how you understand 

renormalization matters

• Wilsonian Effective Field Theory (EFT)

•  Many great examples,  and you already had 2 lectures on 
this

• View SM as EFT valid until scale ⇤
Naively this means that instead of integrating all 

quantum loops over all momenta they are cutoff at ⇤



QUANTUM CORRECTIONS 
TO MASSES IN QFT

�m2 ⇠
Z

d4k

(2⇡)4
1

k2
⇠ ⇤2

7.1 Scalar masses

Let us begin the discussion of scalar masses with an explicit calculation. This will lead to a dis-
cussion of fine-tuning and naturalness. Consider the Lagrangian

L=−1
2
φ(!+m2)φ+λφψ̄ψ+ ψ̄ (i∂−M)ψ (39)

which describes a scalar of mass m coupled to a Dirac fermion of mass M . We will investigate
the effect of the fermion loop on the scalar mass.

The fermion loop is similar to the vacuum polarization loop from Lecture III-2:

iΣ2(p2) =
p

p+ k

k

p
=(iλ)2

∫

d4k

(2π)4
Tr[(p+ k+M)(k+M)]

[(p+ k)2−M2+ iε][k2−M2+ iε]
(40)

The trace is Tr[(p + k + M)(k + M)] = 4(k2 + k · p + M2). Combining denominators, shifting
kµ→ kµ− pµ(1−x) and dropping terms in the numerator linear in kµ gives

iΣ2(p2) =−4λ2
∫

d4k

(2π)4

∫

0

1

dx
k2+ p · k+M2

[k2+(2p · k+ p2) (1− x)−M2+ iε]2

=−4λ2
∫

d4k

(2π)4

∫

0

1

dx

[

1
k2−∆

+
2∆

[k2−∆]2

]

with ∆=M2− p2x(1− x).
In dimensional regularization, the graph is

Σ2(p2)=
4λ2(d− 1)

(4π)d/2
Γ

(

1− d

2

)

µ4−d

∫

0

1

dx(M2− x(1−x)p2)
d

2
−1

(41)

where the quadratic divergence is evidenced by the pole at d = 2. Expanding as d = 4 − ε, the
result is

Σ2(p2) =− λ2

4π2

{

6M2

ε
− p2

ε

+M2− 1
6
p2+

∫

0

1

dx [3p2x(1−x)− 3M2]ln
M2− p2x(1− x)

4πµ2e−γE

}

(42)

which has divergences proportional to both p2 and M2. Dimensional regularization hides the
quadratic divergence when expanding around d= 4, so for illustrative purposes, we will calculate
this graph with a different regulator.

Using the derivative method (see Appendix B) to evaluate the graph, we would find

Σ2(p2)=
3λ2

4π2

∫

0

1

dx

(

[M2− p2x(1− x)]ln
M2− p2x(1− x)

Λ2 +Λ2

)

+finite (43)

Both dimensional regularization and the derivative method indicate divergences proportional to
a constant and proportional to p2. These divergences will be removed by the mass and field
strength renormalization of the scalar field. The quadratic divergence does not change the fact
that the theory can be renormalized, just the values of the required counterterms, which in any
case are regulator-dependent.

The divergences proportional to p2 and M2 are canceled with counterterms from the field
strength and mass renormalizations of the scalar:

= i(p2δφ− (δm+ δφ)mR
2 ) (44)

Using on-shell renormalization, we set the pole of the propagator at the renormalized mass, with
residue 1. As discussed in Lecture III-4, after summing the geometric series of one-particle irre-
ducible contributions to the scalar propagator, the result is

iG(p2)=
i

p2−m2+Σ(p2)
(45)

12 Section 7

Scalar masses

A possible explanation of fine-tuning in particle physics is that there may be patches of the
universe probing different values of parameters in some finite theory (such as the various vacua
of string theory). In this way, model space is explored cosmologically. Thus, if there are 1034

patches of the universe with different Higgs boson masses, it is then natural for us to live in the
only one that can support life. One can then argue that life requires mH ≪MPl which eliminates
the fine-tuning problem. This line of reasoning, known generally as the anthropic principle,
has been increasing in popularity since the 1990s. The scientific merit of the anthropic principle
is often debated. At this point, there are no testable predictions of the anthropic principle, so
we eschew further discussion.

7.3 Fermion and gauge boson masses

Other coefficients of positive mass dimension are fermion and gauge boson masses. Consider first
radiative corrections to fermion masses. For example, we already calculated the self-energy
graph of the electron in QED in Lecture III-4. With dimensional regularization, the result was

Σ2(q)= =− e2

8π2

∫

0

1

dx(2me− xq)

(

2
ε
+ ln

µ̃2

(1− x)(me
2− q2x)+ xmγ

2

)

(54)

which can be compared to Eq. (42). The difference between the pole and MS mass for the elec-
tron in QED was also calculated in Lecture III-4

mP −mMS =
e2

16π2mP

(

5+ 3ln
µ2

mP
2

)

(55)

which can be compared to Eq. (51).
Although not apparent in the expansion around d = 4, the full result has no pole in d = 2 or

d = 3 and is therefore not quadratically or linearly divergent. That is a non-trivial fact. In non-
relativistic quantum mechanics, you do get a linearly divergent shift. This can be seen from a
simple integral over the classical electron-self energy. In the non-relativistic limit, the energy

density of electromagnetic field is ρ∝ |E |2+ |B |2. So

∆m∼
∫

d3rρ(r)∼
∫

d3r
(

e

r2

)

2
∼α

∫

Λ−1

∞ r2dr

r4
∼αΛ (56)

In a relativistic theory, there is only a logarithmically divergent self-energy.
Next, note that in QED, the self-energy correction at q = me is proportional to the electron

mass, not any other mass scale in the problem. In this case, the other mass is a fictitious photon
mass, but the result implies that if the photon in the loop were replaced by a real heavy gauge
boson, like the Z, the correction would still be proportional to me not mZ. For another
example, consider the Yukawa theory in Eq. (39). Then the self-energy graph is

iΣ(p)=

p

k

p− k p

=λ2
∫

d4k

(2π)4
p− k+M

[(p− k)2−m2][k2−M2]
(57)

=i
λ2

16π2

[

p+2M

ε
−
∫

0

1

dx[(1−x)p+M ]ln
M2x+(1− x)(m2− p2x)

µ̃2

]

(58)

There is no correction proportional to the scalar mass m, only to the fermion mass M . This
graph is also not linearly divergent.

What if we throw in some more fermions or a couple more scalars, or look at 6 loops? It
turns out that the mass shift will always be proportional to the fermion mass. The reason this
happens is because the electron mass is protected by a custodial chiral symmetry.

A chiral symmetry is a global symmetry under which the left and right-handed electron
have opposite charge. ψL→ e−iαψL and ψR→ eiαψR. We can write the transformation concisely
as

ψ→ eiαγ5ψ (59)
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Fermion masses



TECHNICAL NATURALNESS
• Why is the scalar mass shift quadratic and 

independent of the mass while the fermion 
correction is proportional to it’s own mass??
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SYMMETRY



TECHNICAL NATURALNESS

Under this transformation, the kinetic term and QED interaction are invariant

ψ̄Dψ→ ψ†e−iαγ5

†

γ0Deiαγ5ψ= ψ̄Dψ (60)

since γ5
†= γ5 and [γ5, γ0γµ] = 0. However, the mass term is not

meψ̄ψ→meψ̄e
2iαγ5ψ meψ̄ψ (61)

Thus the mass term breaks the chiral symmetry. This is consistent with the expansion in terms
of Weyl fermions

ψ̄Dψ+meψ̄ψ= ψ̄RDψR+ ψ̄LDψL+meψ̄LψR+meψ̄RψL (62)

which shows that only the mass term couples fields with different charges under the chiral sym-
metry.

The chiral symmetry is exact in the limit me → 0. That means that if me = 0 then, because
of the exact symmetry, me will stay 0 to all orders in perturbation theory. For me 0, if we
treat the mass as an interaction rather than a kinetic term, then every diagram that violates the
chiral symmetry, including a correction to the mass itself, must be proportional to the me. We
call the symmetry custodial because it acts like a custodian and protects the mass from large
corrections, even if the symmetry is not exact. We also say sometimes that setting me = 0 is
technically natural , a phrase coined by Gerard ’t Hooft:

• Setting a parameter to zero is technically natural if corrections to the parameter are
proportional to the parameter itself.

For another example, consider a vector boson mass. A photon mass term

L= +mγ
2Aµ

2 (63)

breaks gauge invariance. In the limit mγ = 0, gauge invariance is exact, and thus gauge invari-
ance is a custodial symmetry. Thus any contribution to the photon mass will be proportional to
mγ. For mγ = 0, the photon will not get any corrections to any order in perturbation theory.
Keep in mind that this only works if the only term that breaks gauge invariance is the mass
term. If there are other interactions breaking gauge invariance, the mass correction can be pro-
portional to them as well. For example, in the theory of weak interactions, the W and Z bosons
have masses which get corrections proportional to mW and mZ respectively, but also to fermion
masses, since these masses are forbidden by the SU(2)weak gauge symmetry which is sponta-
neously broken in the standard model (see Lecture IV-5).

An important example of a custodial symmetry not related to anything being massless is
custodial isospin, which will be defined in Section ?? of Lecture IV-7.

8 Super-renormalizable theories

In four dimensions there are not many options for Lagrangian terms with coefficients of positive
mass dimension. The possibilities are mass terms, which we already discussed, a constant term,
terms linear in fields, like Λ3φ, and cubic couplings among bosons, like gφ3 or gφAµ

2 . That
exhausts the possibilities in four dimensions. We have already discussed masses, so now we will
quickly go through the the other possibilities.

8.1 Cosmological constant and tadpoles
The only possible term of mass dimension 4 is a constant

L= + ρ (64)

This constant ρ has a name: the cosmological constant. By itself, this term does nothing. It
couples to nothing and in fact it can just be pulled out of the path integral. The reason it is
dangerous is because when one couples to gravity and expands gµν = ηµν + 1

MP l
hµν, the

Lagrangian becomes

L= g
√

(R+ ρ)=
1
2

1
MPl

hµµρ+
1

MPl
2 hµν

2 ρ+ + g
√

R (65)
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Fermions without mass terms have a Chiral Symmetry

RH and LH fields can be rotated separately

Fermion mass terms BREAK this symmetry

When me = 0 the symmetry is exact 

The fermion stays massless to all loop orders



TECHNICAL NATURALNESS
• Fermions and Gauge Bosons Masses have extra 

symmetry protection from Chiral and Gauge 
Symmetries

• Scalars generically have no such symmetry!

• i.e. when setting the scalar mass to zero there is 
no enhanced symmetry



QUANTUM CORRECTIONS
TO HIGGS

• View SM as EFT valid until scale ⇤

m2
h ⇠ m2

0 + ⇤2



HIERARCHY PROBLEM
• EFT+Higgs Mechanism = Trouble...

V (�) ⇠ µ2�2 + ��4

h�i ⌘ v ⇠
r

µ2

�
mh ⇠ µ

µ2 ⇠ µ2
0 + ⇤2

v ⇠ ⇤

⇤ ⇠ Mpl ⇠ 1018 GeVv ⇠ 102 GeV

YIKES!



HIERARCHY PROBLEM
• SM is correct and we just have to tune to a part in 10^32

• .00000000000000000000000000000001 FINE TUNING 

• New physics needs to show up at the TeV scale! In particular we 
need a mechanism/symmetry

OR



THIS IS WHY PEOPLE LIKED 
STRONG DYNAMICS FOR EWSB!

• Why don’t you hear about this problem with QCD?

Mpl

is a dynamically generated scale via strong dynamics⇤QCD

Start with a coupling order .1-.01 at high scale log 
running to low scale, there is no large tuning needed!

⇤QCD ⌧ v



IS THIS ALL MISLEADING?

• We just cutoff a 4d integral and found a bad 
divergence, isn’t the SM renormalizable? YES

• Can’t I just use dim reg and avoid all quadratic 
divergences? YES

• What’s the point then?



EFFECTIVE THEORY MAKES 
SENSE

• Dim reg in              gives      poles

• If there is some new heavy scale we still see it

7.1 Scalar masses

Let us begin the discussion of scalar masses with an explicit calculation. This will lead to a dis-
cussion of fine-tuning and naturalness. Consider the Lagrangian

L=−1
2
φ(!+m2)φ+λφψ̄ψ+ ψ̄ (i∂−M)ψ (39)

which describes a scalar of mass m coupled to a Dirac fermion of mass M . We will investigate
the effect of the fermion loop on the scalar mass.

The fermion loop is similar to the vacuum polarization loop from Lecture III-2:

iΣ2(p2) =
p

p+ k

k

p
=(iλ)2

∫

d4k

(2π)4
Tr[(p+ k+M)(k+M)]

[(p+ k)2−M2+ iε][k2−M2+ iε]
(40)

The trace is Tr[(p + k + M)(k + M)] = 4(k2 + k · p + M2). Combining denominators, shifting
kµ→ kµ− pµ(1−x) and dropping terms in the numerator linear in kµ gives

iΣ2(p2) =−4λ2
∫

d4k

(2π)4

∫

0

1

dx
k2+ p · k+M2

[k2+(2p · k+ p2) (1− x)−M2+ iε]2

=−4λ2
∫

d4k

(2π)4

∫

0

1

dx

[

1
k2−∆

+
2∆

[k2−∆]2

]

with ∆=M2− p2x(1− x).
In dimensional regularization, the graph is

Σ2(p2)=
4λ2(d− 1)

(4π)d/2
Γ

(

1− d

2

)

µ4−d

∫

0

1

dx(M2− x(1−x)p2)
d

2
−1

(41)

where the quadratic divergence is evidenced by the pole at d = 2. Expanding as d = 4 − ε, the
result is

Σ2(p2) =− λ2

4π2

{

6M2

ε
− p2

ε

+M2− 1
6
p2+

∫

0

1

dx [3p2x(1−x)− 3M2]ln
M2− p2x(1− x)

4πµ2e−γE

}

(42)

which has divergences proportional to both p2 and M2. Dimensional regularization hides the
quadratic divergence when expanding around d= 4, so for illustrative purposes, we will calculate
this graph with a different regulator.

Using the derivative method (see Appendix B) to evaluate the graph, we would find

Σ2(p2)=
3λ2

4π2

∫

0

1

dx

(

[M2− p2x(1− x)]ln
M2− p2x(1− x)

Λ2 +Λ2

)

+finite (43)

Both dimensional regularization and the derivative method indicate divergences proportional to
a constant and proportional to p2. These divergences will be removed by the mass and field
strength renormalization of the scalar field. The quadratic divergence does not change the fact
that the theory can be renormalized, just the values of the required counterterms, which in any
case are regulator-dependent.

The divergences proportional to p2 and M2 are canceled with counterterms from the field
strength and mass renormalizations of the scalar:

= i(p2δφ− (δm+ δφ)mR
2 ) (44)

Using on-shell renormalization, we set the pole of the propagator at the renormalized mass, with
residue 1. As discussed in Lecture III-4, after summing the geometric series of one-particle irre-
ducible contributions to the scalar propagator, the result is

iG(p2)=
i

p2−m2+Σ(p2)
(45)
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d = 4� ✏
1

✏

�m2 ⇠ 1

✏
+M2

Integrating out a heavy fermion of mass M would set an EFT cutoff 
⇤ ⇠ M

�m2 ⇠ M2 ⇠ ⇤2



THERE’S NO WAY AROUND 
THE HIERARCHY PROBLEM…

• UNLESS there are NO new mass scales in the 
universe… We already know there is the Planck 
scale

• IF you massively modify gravity… what if conformal 
symmetry was spontaneously broken and that’s the 
symmetry that protected the Higgs?  Beautiful 
WRONG idea without new physics at low scale… 



HIERARCHY PROBLEM

• It is a problem, and not an artifact of how we do renormalization

• Three “reasonable” options (so far)

• Fine Tuned Universe - Anthropic Principle?

• Strong Dynamics - Ruled out

• Weakly coupled Higgs like object with some symmetry 
protecting its mass



HIERARCHY PROBLEM

• It is a problem, and not an artifact of how we do renormalization

• Three “reasonable” options (so far)

• Fine Tuned Universe - Anthropic Principle?

• Strong Dynamics - Ruled out

• Weakly coupled Higgs like object with some symmetry 
protecting its mass



WHAT IS THE SYMMETRY AND 
WHERE IS THE NEW PHYSICS?

Beauty is in the eye of the beholder

⇤ ⇠ TeV? ⇤ ⇠ MP ?v

Top loop

How tuned is acceptable??



WHAT IS THE SYMMETRY AND 
WHERE IS THE NEW PHYSICS?

Beauty is in the eye of the beholder

⇤ ⇠ TeV? ⇤ ⇠ MP ?v

Top loop

How tuned is acceptable??

Natural Mesotuning? Fine-Tuned
Anthropic

⇠ 100TeV



IT ISN’T JUST WHERE THE 
CUTOFF IS…

• If you numerically cancelled the top contribution 
to the quadratic divergence of the Higgs at a given 
scale, without a symmetry it will be regenerated!!

• We need to construct a symmetry that preserves 
this cancellation



A NATURAL UNIVERSE

v Standard Model

UV completion of SM
~ TeV scale What is this?

The LHC is probing this scale already 
and in case you haven’t heard it hasn’t 
found anything other than the Higgs!



WHAT DOES A NATURAL 
UNIVERSE LOOK LIKE?

To come up with a symmetry AND satisfy 
all experimental constraints do we have to 

build models that look like…



WHAT DOES A NATURAL 
UNIVERSE LOOK LIKE?



WHAT DOES A NATURAL 
UNIVERSE LOOK LIKE?

When really the universe looks like this, and we’re not that special?



WE DON’T KNOW FOR 
SURE…

• We also don’t even know how to ever say for sure 
unless we build a Planck scale collider…

• All we can do is try to come up with all the 
mechanisms that could protect the Higgs mass and  
look for them

• Physics is an experimentally driven science! 



NATURAL MODELS/HOW TO 
PROTECT THE HIGGS MASS?

In a weakly coupled theory, despite 30+ years of smart 
theorists working hard, we have two ideas…

The Higgs is a 
pseudo-Goldstone boson

Our universe has new 
quantum dimensions… 

Supersymmetry

VERY different mechanism and not on the same footing… 



HIGGS AS A PSEUDO 
GOLDSTONE BOSON (PGB)

• Symmetry to make “Higgs” light

• What if Higgs were a Goldstone boson itself??

For example enlarge EW gauge group to SU(3)
SU(3) ! SU(2)

Introduce a complex scalar triplet of SU(3) that 
gets a VEV

7

tunately, the symmetry needed forbids all non-
derivative couplings. Thus θ is not a good toy
example for a light Higgs, it has no quartic, gauge
or Yukawa couplings.

Furthermore, θ also has the wrong quantum
numbers to be the SM Higgs. This is easily fixed
by generalizing to non-abelian symmetry break-
ing. Consider for example the breaking of a
global SU(3) symmetry to SU(2) by an expec-
tation value for a complex triplet field < ΦT >=
< (φ1, φ2, φ3) >= (0, 0, f). In this vacuum Φ is
conveniently parameterized as

Φ = eiθ/f

⎛

⎝

0
0
f

⎞

⎠ (9)

where θ = θa T a is a hermitian 3× 3 matrix con-
taining the properly normalized five Goldstone
bosons from the breaking of SU(3) → SU(2)

θ =
1√
2

⎛

⎝

0 0
0 0

h

h† 0

⎞

⎠ +
η

4

⎛

⎝

1 0 0
0 1 0
0 0 −2

⎞

⎠ . (10)

Under the unbroken SU(2) the four real fields in
h transform as a complex doublet whereas η is
a singlet. As in the abelian case, by performing
a space-time dependent SU(3) rotation it is pos-
sible to remove all non-derivative interactions of
the Goldstone fields. This is still very different
from the SM Higgs boson, our “Higgs” h is an
SU(2) doublet but it has no gauge, quartic, or
Yukawa interactions and is exactly massless.

To add these couplings we need to explicitly
break the global SU(3) symmetry. Explicit sym-
metry breaking introduces non-derivative cou-
plings of the Goldstone bosons, they become
pseudo-Goldstone bosons. If the explicit symme-
try breaking stems only from a small “spurion”
parameter ϵ then all non-derivative couplings are
proportional to the spurion. This remains true
even including radiative corrections. Thus break-
ing of global symmetries by small spurions gives
us control over quantum corrections. In the dia-
gram of Figure 7. a small breaking of the sym-
metry corresponds to a small tilt of the “Mexican
hat” proportional to ϵ.

This is all very nice and allows us to control
the mass of pseudo-Goldstone bosons, however –

unfortunately – the SM Higgs couplings are not
small. Thus even though radiative corrections are
proportional to these couplings, this does not suf-
ficiently suppress the contributions to the Higgs
mass; i.e. simply adding the SM Higgs couplings
and thereby explicitly breaking the SU(3) sym-
metry leads to the radiative corrections of Figure
1. which are too large ∼ λ2

t /16π2 Λ2.
The new model building idea which led to the

construction of Little Higgs models is collective
breaking of symmetries. Instead of breaking the
symmetry with a single coupling, one introduces
two couplings in such a way that each coupling
by itself preserves sufficient amount of symme-
try to guarantee the masslessness of the pseudo-
Goldstone boson. Schematically, we add two new
sets of interactions Li to the SU(3) preserving
Lagrangian L0

L = L0 + ϵ1L1 + ϵ2L2 , (11)

where each term is chosen such that by itself it
preserves an SU(3) symmetry but that together
they break SU(3) explicitly. Therefore radiative
corrections to the Higgs mass are necessarily pro-
portional to both spurions ϵ1 and ϵ2. In the ex-
ample we will study below, the fact that both
spurions are required implies that quadratically
divergent contributions arise only at two loops
∼ ϵ21/16π2 ϵ21/16π2 Λ2 which is sufficiently small
for Λ = 10 TeV even for ϵi ∼ 1.

3.2. Toy Little Higgs theory

In order to study the LH mechanism without
the notational complexity require by the many
fields of the SM let us imagine a toy world
without hypercharge in which the only fermions
are top and bottom quarks with their normal
Yukawa couplings and SU(3) × SU(2) gauge in-
teractions. Particle theorists of this toy world
have constructed a “Toy Standard Model” which
suffers from the same hierarchy problem as the
real SM. In order to protect the toy SM Higgs
from quadratic divergences one can introduce an
SU(3) symmetry which is spontaneously broken
to SU(2) at the scale f ∼ 1 TeV. The Higgs con-
sists of four of the resulting Goldstone bosons as
described before.

We generate Yukawa and gauge couplings with-
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Goldstone Bosons
h is a doublet under SU(2)!
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suffers from the same hierarchy problem as the
real SM. In order to protect the toy SM Higgs
from quadratic divergences one can introduce an
SU(3) symmetry which is spontaneously broken
to SU(2) at the scale f ∼ 1 TeV. The Higgs con-
sists of four of the resulting Goldstone bosons as
described before.

We generate Yukawa and gauge couplings with-
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tunately, the symmetry needed forbids all non-
derivative couplings. Thus θ is not a good toy
example for a light Higgs, it has no quartic, gauge
or Yukawa couplings.

Furthermore, θ also has the wrong quantum
numbers to be the SM Higgs. This is easily fixed
by generalizing to non-abelian symmetry break-
ing. Consider for example the breaking of a
global SU(3) symmetry to SU(2) by an expec-
tation value for a complex triplet field < ΦT >=
< (φ1, φ2, φ3) >= (0, 0, f). In this vacuum Φ is
conveniently parameterized as

Φ = eiθ/f

⎛

⎝

0
0
f

⎞
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Under the unbroken SU(2) the four real fields in
h transform as a complex doublet whereas η is
a singlet. As in the abelian case, by performing
a space-time dependent SU(3) rotation it is pos-
sible to remove all non-derivative interactions of
the Goldstone fields. This is still very different
from the SM Higgs boson, our “Higgs” h is an
SU(2) doublet but it has no gauge, quartic, or
Yukawa interactions and is exactly massless.

To add these couplings we need to explicitly
break the global SU(3) symmetry. Explicit sym-
metry breaking introduces non-derivative cou-
plings of the Goldstone bosons, they become
pseudo-Goldstone bosons. If the explicit symme-
try breaking stems only from a small “spurion”
parameter ϵ then all non-derivative couplings are
proportional to the spurion. This remains true
even including radiative corrections. Thus break-
ing of global symmetries by small spurions gives
us control over quantum corrections. In the dia-
gram of Figure 7. a small breaking of the sym-
metry corresponds to a small tilt of the “Mexican
hat” proportional to ϵ.

This is all very nice and allows us to control
the mass of pseudo-Goldstone bosons, however –

unfortunately – the SM Higgs couplings are not
small. Thus even though radiative corrections are
proportional to these couplings, this does not suf-
ficiently suppress the contributions to the Higgs
mass; i.e. simply adding the SM Higgs couplings
and thereby explicitly breaking the SU(3) sym-
metry leads to the radiative corrections of Figure
1. which are too large ∼ λ2

t /16π2 Λ2.
The new model building idea which led to the

construction of Little Higgs models is collective
breaking of symmetries. Instead of breaking the
symmetry with a single coupling, one introduces
two couplings in such a way that each coupling
by itself preserves sufficient amount of symme-
try to guarantee the masslessness of the pseudo-
Goldstone boson. Schematically, we add two new
sets of interactions Li to the SU(3) preserving
Lagrangian L0

L = L0 + ϵ1L1 + ϵ2L2 , (11)

where each term is chosen such that by itself it
preserves an SU(3) symmetry but that together
they break SU(3) explicitly. Therefore radiative
corrections to the Higgs mass are necessarily pro-
portional to both spurions ϵ1 and ϵ2. In the ex-
ample we will study below, the fact that both
spurions are required implies that quadratically
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∼ ϵ21/16π2 ϵ21/16π2 Λ2 which is sufficiently small
for Λ = 10 TeV even for ϵi ∼ 1.
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from quadratic divergences one can introduce an
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Goldstone Bosons
h is a doublet under SU(2)!

h only has derivative 
interactions
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LITTLE HIGGS
• After many decades, theorists became more clever and came 

up with a way to “double” protect the PGB so quadratic 
divergences were canceled at one loop
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Each term preserves extra symmetry by itself,
but collectively the symmetry is broken



LITTLE HIGGS
• After many decades, theorists became more clever and came 

up with a way to “double” protect the PGB so quadratic 
divergences were canceled at one loop

• Typical structure of theory:

f ⇠ TeV

⇤ ⇠ 4⇡f

�m2
h ⇠ f2

There are other PGB theories, e.g. Twin 
Higgs, but they all rely on the same shift 

symmetry mechanism
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