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QCD factorization and PDFs

pp — (Z° — pup)X: Feynman diagram at the leading order in QCD. Let's
now consider higher orders (...).
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QCD factorization and PDFs

p q # According to QCD factorization theorems, typical cross
) +... sections (e.g., for p(k1)p(k2) — [Z(q) — ((ks)l(ks)] X)
2 i take the form

q

1 1
Opp—tlX = Z /0 dfl/o d€26—\abHZHM(xl xQ'Q) fa/p(glnu)fb/p(g%ﬂ)

+ 0 (AHep/Q%)
M5, ., ., is the hard-scattering cross section
W f,/,(& ) are the PDFs
B Q% = (ks + ks)?, 719 = (Q/\/5) eTYV— measurable quantities
B ¢, & are partonic momentum fractions (integrated over)

B ;. is a factorization scale (=renormalization scale from now on)
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QCD factorization and PDFs

p q # According to QCD factorization theorems, typical cross

) +... sections (e.g., for p(k1)p(k2) — [Z(q) — ((ks)l(ks)] X)

2 i take the form
q

1 1
OppstiX = Z /0 dfl/o d€28ab~>Z~>E€(xl x;Q) Jarp(&0s 1) foyp (&2, 1)

abeaa & & p
+0 (Ayen/Q7)

B/ is naturally set to be of order @)

B Factorization holds up to terms of order AQQCD/Q2
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QCD factorization and PDFs

p q # According to QCD factorization theorems, typical cross
) +... sections (e.g., for p(k1)p(k2) — [Z(q) — ((ks)l(ks)] X)
2 i take the form

q

OppstiX = Z /dfl/ d€20ay— 70t (? 22 3) Jarp(&0s 1) foyp (&2, 1)

a,b=q,q4,9

+ 0 (Ayen/Q?)

B Subtract large collinear logarithms o In"(Q*/m?) from &

B Resum them in f,/,(&, 1) to all orders of oy
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QCD factorization and PDFs

p q # According to QCD factorization theorems, typical cross
) +... sections (e.g., for p(k1)p(k2) — [Z(q) — ((ks)l(ks)] X)
2 i take the form

q

1 1
Opp—stlX = a’bgq,g/o dfl/o d€2 0oy 7500 (Za g; Cj) fap(§1s 1) foyp (€2 1t)

+ O (Ajep/@?)

B Hard cross sections & depend only on the partonic process. They are
computed.

B PDFs f, (&, 1) are universal functions. They are defined in QFT

and “measured” for each pair of hadron / and parton a.
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Operator definitions for PDFs

|
To all orders in vy, PDFs are defined as matrix elements of certain
correlator functions:

R P T )
uplsi) = 3= | dye P [, (0,7, 0r)y 04(0,0.0) | ), etc

Several types of definitions, or factorization schemes (175, DIS, etc.),
exist

They all correspond to the probability density for finding a in p at LO; they
differ at NLO and beyond

To prove factorization, one must show that f,/,(, ;1) correctly captures
higher-order contributions for the considered observable

This condition can be violated for multi-scale observables
(e.g., DIS or Drell-Yan process at = ~ Q//s < 1)
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Exercise. Factorization in pp — (Z — ete™)X

The appendices contain
1. A derivation of the NLO cross section for pp — ZX
(on-shell Z boson production)
using cut Feynman diagrams |M|”. A lecture by C.-P. Yuan.

2. A derivation of the Born cross section for pp — (Z — eTe™)
(Z boson production and decay) using helicity amplitudes

M hohshy-

Work out these derivations after the lectures.
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Derive the LO cross section for a spin-1 boson

Traditional path Feynman Rules

Lagrangian=-Feynman rules =

> spin |M>=Tr (y21...4%n ) =cross section -

TR,
Helicity amplitudes o WN<
Lagrangian=-"Feynman rules” for helicity  Quan e veres
amplitudes— M=}, | M| = cross section oy o
B Efficient computation of tree diagrams ’ é,vlg,,j:_ .

2= Cr Iy =2t ey
M are building blocks in unitarity-based QCD e

calculations

B Many excellent reviews, e.g., Mangano, Parke, Phys. Rep. 200, 301; Dixon,
hep-ph/9601359
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Factorization Theorem

2
O = Sij i daidmy gy (2, Q%) Hij (%) b (w2, Q%)

Nonperturbative, IRS, Calculable
but universal, in pQCD
hence, measurable

Procedure:

(1) Compute oy in pQCD with k,l partons
(not h, k' hadron)

1 Q%
ou =3 [} deadez g1y (w1, Q) i <7S> 91 (22, Q%)
i
(2) Compute ¢,/ 5/ in PQCD

(3) Extract H;; in pQCD

H;; IRS = H;; indepent of k,l
= same H;; with (k — h,l — /)

(4) Use H;; in the above equation with ¢; ;, é;/



Extracting Hij in pQCD

e Expansions in as:

X fas\T 92
=3 (7)ol =
n=0
o0 n
— s (n)
my= 3 () 8
n=0

R o W AL ()
bijp (2) = "M](l ) +n§1 ( W) b3/

r)/(o}z (as = 0 = Parton k ‘ stays itself ")
e Consequences:

O — 5 = “Born”
Hj}) =0} = “Born suppress "~ from now on

1 1 0) (1 1 (0
Hy =af - | of $ijs + Bt

Computed from Computed from
Feynman diagrams the definition of
(process dependent ) perturbative parton

distribution function
( process independent,
scheme dependent)



Feynman Diagrams

Born level

NLO:

NLO:

NLO:

NLO:

($)

al® (49) Bor

>MW
i

n

virtual corrections (qq’)yirt

e P B

(afV)

(afV)

(afV)

real emission di

real emission di
real emission di

o,

agrams (4q')real

agrams (¢G)eal

2

agrams (Gq')rear
s



In ” Cut-diagram” notation

s
SRR

piQ SOS Ot

(Gq)real
Same as (¢G),.q after replacing ¢ by ¢'.

(99) Born

(9@ virt

2 x Re




Immediate problems (Singularities)

e Ultraviolet singularity

: ~ [t

e Infrared singularities

(R) 2

iy
as k" — 0 (soft divergence)

or k|| p* (collinear divergence)
1 —
G-R2—m2
p-k—0as
k—0 or k*|p* (for m=0)
k — 0 (for m # 0)

L (form=00r m#0)
2k

(Similar singularities also exist in virtual diagrams.)

e Solutions
Compute H;; in pQCD in n = 4 — 2¢ dimensions
(dimensional regularization)

(1) n# 4 = UV & IR divergences appear as X poles
in afj” (Feynman diagram calculation)
(2) Hi; is IR safe = no L in H,;
(H,; is UV safe after "renormalization”.)



Virtual Corrections (qq’)yirt
(in Feynman Gauge )

£ =0

and -1 poles cancel when eyy = —ejp=¢

%\ cancel = Electroweak coupling is not
renormalized by QCD interactions
at one-loop order

(Ward identity,
a renormalizable theory)

! poles remain

() is free of ultraviolent singularity.

Toirt
W _ 47(0’&6(1 _ 5 4rp?\° T (1 —¢)
M? ) T(1-2e¢)

virt o1
2 2
—8+ %} ()

o

2. soft and collinear singularities

3: soft or collinear singularities

Cr: color factor

0@ = ER (1-2)




Real Emission Contribution (¢7'),cq

o l Collinear
&€

Soft and Collinear

=

@ (o oo (4m2\ ra-o
ot (a7) = ()2 (m) r(1725) o

ca-a, =

Note: [---], is a distribution,

/:(I:/(:') |:1%:|+7/ /(iff/m which is finite.

e In the soft limit, 7 —1 (7 =12

o Joo (4P Ta-o
e (07) — 05 (AI? r(1-20) "

2 In(1-7)
.{;26(1 H-tat eR +o(mE=2 )+}




(q‘?)m‘rt + (q‘?)real at NLO

oD — oD, (a7) + o2 (o)

72 o\ (IN(L=7)
Tin? 4(1-*—7)(ﬁ)+
2
+(2%—8)5(1—7’-)}
Where we have used

2[4

3 ]2
= m+55(177)}_

-2 (147
€ 1-7 /)4

in o
cancel in 0,7

All the soft singularities (

= KLN theorem

(Kinoshita-Lee-Navenberg)

1
a;;,) ~ —(term) + finite (terms)




Factorization Theorem

e Perturbative PDF
¢f/°g =60 (1)

~0'!) can be calculated from the definition of PDF.

(Process independent,but factorization scheme dependent)

(1)
©
Ou = = HY =o))
(2
@)
m _ ;
w = .
J
&)
S - - [ )

Finite Divergent



Perturbative PDF

e In MS-scheme (modified minimal subtraction)

o)) = 60 () = 25 (ame ) P, )
s = oy =15 (4 B )

e

where the splitting kernel for ‘; is
Y

Pq‘i)q () =Tr(2+ 1 -2?),
where Cp = 3 4 and Tr = —.

Note: The Pole part in the MS scheme is
é—l(4ﬂ€ TE)E = 1+|n47'rf’yE
In the MS scheme, the pole part ISJuSt



Find H(l) (in the MS scheme)

e Take off the factor (“75)

s

o = 0® {Pm @ [ (M ) ,1+757|n47r]

+Cr {7 Rk (147 )(Inilf_:))Jr-%—(%?—A)s(l—?)]}

HY ()=o) = [2607)]

M2
=F7(D)v{P,;l)q(ﬂ"-)ln (?)
+c,[ 1+ +2(1+¢)(%)++(§74)5(1—?)}}

where
X © =50 . (1
= @ =50 (1-2),
2
GO —_ T 2_ T 1
T 1% T 128w

e PQCD prediction
T = {Z /d11d12¢f/’x x1,1%) [ (0)5(1*7)] P (12 w” )
=
o (1) @
+ E dwrdueadn (v1,10°) | ——=HP () | b (w20 r°)

= T

"“(“2) ) (= 2
+y / derdezgyp, (w1,4°) | ——LHE ()| b (w2,1%) + (@1 22)

f=a7



“Renormalization” and “Factorization”

UV renormalization Collinear/soft factorization
A: Bare Green Func. Go(ap,mo,..) | Partonic X-sect F,
B: Ren. constants Zi(p) Pert. parton dist. A}
C: Ren. Green Fun. Gr=Go/Z | Hard X-sect F=F/f
D: Anomalous dim. y= JZ‘-ﬁZ Splitting fun. P= 9%[
E: Phys. para. a,m aoZ;... Had. parton dist. fa resummed
F: Phys sc. amp. a(u) Gr(m,p) | Hadronic S.F.'s  Fa  fa(u) x F(u)

Some common features:
A : divergent; but, independent of “"scheme” and scale y;

B : divergent; scale and scheme dependent;
universal; absorbs all ultra-violet/soft/collinear divergences;

C & D : finite; scheme-dependent;
D controls the u dependence of E & F;

E : physical parameters to be obtained from experiment;
F : Theoretical “prediction”; p-indep. to all orders,
but p-dep. at finite order n; pi ~ O(amt!)

Note: “Renormalization” is factorization (of UV divergences);
“factorization” is renormalization (of soft/collinear div.)

Q>



QCD factorization and PDFs

p q # According to QCD factorization theorems, typical cross
) +... sections (e.g., for p(k1)p(k2) — [Z(q) — ((ks)l(ks)] X)
2 i take the form

q

1 1
OppstiX = Z /0 dfl/o dg?aab%Z%f@(xl xQ'Q) Jarp(&0s 1) foyp (&2, 1)

=, ==
a,b=q,q4,9 G &op

+ O (Ajep/@?)

Once we computed partonic cross sections 7, (7)., We must
convolve them with proton PDFs f,/,(¢1, 1) and f,/, (&2, ).
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Operator definitions for PDFs

To all orders in vy, PDFs are defined as matrix elements of certain
correlator functions:

o0

1
fq/p(xau) - E/_

The exact form of f,/, is not known; but its /2 dependence is described by
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations:

pJurop) 5 / U py (Lr0u) Synlons)

d
H j=gu,q,d,d,..

dy e P (p ‘%(0, y~,07)7"14(0,0,07) ‘ p), etc.

o0

P;,; are probabilities for j — ik collinear splittings;
are known to order a? (NNLO):

Py (,0) = 0Py (2) + 02PJ) (@) + ol Py} e) +
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Universality of PDFs

|
To all orders in vy, PDFs are defined as matrix elements of certain
correlator functions:

R P T )
uplsi) = 3= | dye P [, (0,7, 0r)y 04(0,0.0) | ), etc

PDFs are universal — depend only on the type of the hadron (p) and
parton (¢, 4, 9)

.. can be parametrized as

fipp(z, Qo) = apz™ (1 — 2)* F (a3, ay, ...) at Qo ~ 1 GeV
... predicted by solving DGLAP equations at i > Qg
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S B_—ee
Example of DGLAP evolution

Compare 11 dependence of u
quark PDF and the gluon

a PDF
<
X< Quo= 4 Cevis2
< __up CTEQ6.6M The u, d PDFS haVe a
o r _... down  CTEQ6.5M .o
gluon  CTEQ6.6M Character|st|c bump at
[ e x ~ 1/3 — reminiscent of

early valence quark models of
the proton structure

The PDFs rise rapidly at
x < 0.1 as a consequence of
perturbative evolution

Y BTN BRI YT I S
Durhali PDF platl:é?j3 http://du}*?;tzig.dur.ac.uW?hepdata/‘}dB.html
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S B_—ee
Example of DGLAP evolution

o HEFDATA - -
E e 150 Caens As () increases, it becomes
L e crEee more likely that a high-x
09 r
o8 | parton loses some momentum
o through QCD radiation
0.4
= u(z, Q) reduces at
Q.3
x 2 0.1, increases at x < 0.1
0.2
Q.1
0.09 r
0.08
0.07
0.06 -
0.05

Y A Y E SR B
Durhali PDF platl:é?j3 http://du}*?;tzig.dur.ac.uwyhepdata/‘}dflhtml
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S B_—ee
Example of DGLAP evolution

o HEFDATA - -
E e s oaen As () increases, it becomes
L e crEee more likely that a high-x
09 r
08 | parton loses some momentum
o through QCD radiation
0.4
= u(z, Q) reduces at
Q.3
x 2 0.1, increases at x < 0.1
0.2
Q.1
0.09 r
0.08
0.07
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T B Y R B
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S B_—ee
Example of DGLAP evolution

N . .
< oae 100 Garnn As () increases, it becomes
= __up CTEQ6.6M

more likely that a high-x
parton loses some momentum
through QCD radiation

= u(z, Q) reduces at
x 2 0.1, increases at x < 0.1

0.1 =
008 F
0.08
0.07

0.06 -

0.05

Y S Y EE SRS Y B
Durhali PDF platl:é?j3 http://du}*?;tzig.dur.ac.uwyhepdata/‘}dflhtml
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S B_—ee
Example of DGLAP evolution

o HEFDATA - -
E oe 10000 Gavens As () increases, it becomes
L e crEee more likely that a high-x
0.9
o3 parton loses some momentum
o through QCD radiation
0.4
= u(z, Q) reduces at
Q.3
x 2 0.1, increases at x < 0.1
0.2
0.1 =
0.09 r
0.08
0.07
0.06 -
0.05

P S Y E SRS B
Durhali PDF platl:é?j3 http://du}*?;tzig.dur.ac.uwyhepdata/‘}dflhtml
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..y
Example of DGLAP evolution: @ and gluon PDF

g(x, Q) can become negative
at z < 1072, Q < 2 GeV

g°F may lead to unphysical
Fogs [ Q2= 169 Geven2 _—
* __ upbar  CTEQ6.6M pFEdICtIOHS

2 b g\uo}I‘\CTEQe.SM

~gluon  TW20081LO This is an indication that

) DGLAP factorization
experiences difficulties at such
small z and @

Large In®(1/z) in Pyi(r)
i break PQCD expansion at
3 z~Q/s<1

-15

Linear scale... ‘ ‘
ar

a 107 10~ 10-
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Example of DGLAP evolution: @ and gluon PDF

g(z, Q) can become negative
at z < 1072, Q < 2 GeV

S may lead to unphysical
= r Qe2= 169  GeVes2 .-
o0 __ upbar  CTEQ6.6M pl’edlctlons

--- gluon CTEQ6.6M

ol quon w0080 This is an indication that

: DGLAP factorization
experiences difficulties at such
small x and Q)

Large In*(1/z) in P;i(r)
break PQCD expansion at
x~ Qs <1

Pavel Nadolsky (SMU) 2014-12-09 22



Example of DGLAP evolution: @ and gluon PDF

e
S

Pavel Nadolsky (SMU)

Qu2= 4

GeVes2

— upbar  CTEQ6.6M

- gluon

gluon

CTEQ6.6M
MSTW2008NLO

As () increases, g(x, Q) grows
rapidly at small «

(@) becomes small enough
to suppress In*(1/z) terms

small-z behavior stabilizes

2014-12-09 22



..y
Example of DGLAP evolution: @ and gluon PDF

~ 102

A

XL Qu2= 100 GeVis2 .

;= i o As Q increases, g(r. Q) grows
I - guon  CTEQB.6M rapidly at small «

10 b gluon  MSTW2008NLO
‘ as(Q) becomes small enough
to suppress In*(1/z) terms

small-z behavior stabilizes
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..y
Example of DGLAP evolution: @ and gluon PDF

102
x I Qu2= 10000 GeVes2 1
z o oo oo As Q increases, g(z, () grows
I Thl e guen  CTEQBEM rapidly at small «
10 i gluen  MSTW200BNLO

(@) becomes small enough
to suppress In*(1/z) terms

small-z behavior stabilizes

Pavel Nadolsky (SMU) 2014-12-09 22



Where do the PDFs come from?

Pavel Nadolsky (SMU)

Da¢
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Where do the PDFs come From.?

* From a combination

of BIG, medium,
and small experiments

e Complementarity in

— kinematical ranges
— systematics

’6‘ B | +lotticeQCD

LHC HERA Fixed-target oo
RHIC experiments s
Tevatron EIC P py




L
Recent CT10 NNLO PDFs

[arXiv:1302.6246]

x 1(x,Q) versus x

1. 1.0

uval Q=2GeV u—val  Q=3.16GeV]
dval dval
01 01g
038 0.1 Sea 08 0.1 5ea
06 0.6
& S
N\
04 0.4 NS
‘*\ ~\s
02 RS 02 h
= 0. 4
10 0001 001 o1 1 10 0001 001 01 1
! I Q=8Gev ! | Q=85GeV
u—val  Q=8Ge WYl Q=85Ge
i val dyal
\
0.8 15ea 08 0.\%ea
‘\
\\
06F N 0.6
)
)
\
)
04 N 0.4
02 02
0. 0,0
10 0001 001 o1 1 0% 0001 001 01 1

FIG. 2: CT10NNLO parton distribution functions. These figures show the Hessian error PDFs
from the CT10NNLO analysis. Each graph shows z usjence = #(u—T), 2 dyajonce = 2(d—d), 0.10z ¢
and 0.10 x gsea as functions of = for a fixed value of @@. The values of @ are 2, 3.16, 8, 85 GeV.
The quark sea contribution is gsea = 2(? + 1 +3). The dashed curves are the central CT10 NLO
fit.
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CT10 NNLO describes well LHC 7 TeV experiments

g C 0.35 S tectron charge asymmetry, | L at=040 pbr" 57 Tov

= 680 N o s sssssasaan e
>: 660 0.24 || d;ta 3
> 6 } ' o.50 | ——_CT10NNLO PDF err. | _F
T 6 0.2 E
% 6 0.18 =
1T 5 { 0.16 E
2 5 0.14 E
= 5 0.12 3
% 5 ATLAS 35 pb™! 0.08 E
© L L I 1 L L I L )

s 50 1 15 2 25 O 05 T T5 2 25 0%E L e

M | n 02040608 1 1.2141.61.8 2 2224

Miepl

5 ATLAS inc. jet (2010, R=0.6)
S 4800 Ratio w.r.t. CT10 NNLO

= —— SRS scale une.
< 460 L2z POF une.es

IS
EN

I
n

o0.3<iyi<0.8

IS
=)
=

w
@
o

<iyi<1.2 . i 2.8<iyi<3.6

r

lep’

w w
n

RESBOS CT10-NNLG
| | | |
05 1 15 2 25

| o 200 400 600 800 1000 1200 o© 100 200 300 a0 500
tep Pr GeV) Pr Gev)

do/dm | (pp > W = 1v +
w
[o2]

w
<]
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=111, -
NNLO gluon PDF zg(z, Q) from 5 groups

xg(x, Q% = 25 GeV?) - &, = 0.118 xg(x, Q% = 25 GeV?) - a, = 0.118
asas Viaaa

[EI00 NNPDF2.3NNLO
J CT10NNLO
MSTW2008 NNLO

I NNPDF2.3 NNLO
ABM11 NNLO

Linear x scale o

T T T T T T T TV T
0.1 02 03 04 O).(S 06 07 08 09 1

T T T T T I T
01 02 03 04 0).(5 06 07 08 0.9

xg(x, QF = 25 GeV?) -, = 0.118 xg(x, Q% = 25 GeV?) - a, = 0.118
T T

[0 NNPDF23NNLO

ISTW2008 NNLO

Logarithmic =
scale

L L i L L L
10° 10?2 107 1 10° 10* 10° . 10? 10" 1

_ _ R Ball etal, 1211.5142
Several PDF groups provide their parametrizations of PDFs. How are these

parametrizations obtained?

.
10° 10

Pavel Nadolsky (SMU) 2014-12-09 27



The flow of the PDF analysis

Benchmark data
(DIS, etc.)

Pavel Nadolsky (SMU)

Predictions
for new processes

o (pp->WH+X)

N\

PDFs are not measured
directly, but some data
sets are sensitive to
specific combinations of
PDFs. By constraining
these combinations, the
PDFs can be disentangled

in a combined (global) fit.

2014-12-09
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The flow of the PDF analysis

Benchmark data

do (DIS, etc.)
dy ‘
Y

Data sets and y?/d.o.f.
in CT10 NNLO and
CT10W NLO analyses

Exporimental data sot [V, [CTIONNLO[CTIOW,
Combined HERAL NC and CC DIS [74]__[570_[L.07 7
BCDMS Fj [75] 330 [1.16 1.14
BCDMS F¥ [76] 251 [1.16 1.12
NMC F} [77] [201 [1-66 171
NMC F§/F} [77] [123 {123 1.28
Totd [CDHSW F% [78] P_ﬁ 083 0.66
Predictions [CDHSW F} [78] 96 [0.81 0.75
for new processes CCFR 3 [19] 60 [0.08 02
CCFR 277 [80] 6 [0.40 050
c (pp. >WH+X) NuTeV neutrino dimuon SIDIS [81] 38 [0.78 0.91
NuTeV antincutrino dimuon SIDIS 1] |33 [0.86 .01
CCFR neutrino dimuon SIDIS [52] [ [120 125
CCFR ant dimuon SIDIS [82] B 0.78
[HLF5 33 8 17 1.26
L o¢ for cz [59, 84] 0 [1.63 51
ZEUS F5 [57] R ) 0.00
7ZEUS F [53) 27_Jo62 0.7
605 Drell-Yan proces, o(pA) [85] 110_[0.80 051
[E866 Drell Yan process, a(pd)/(20(pp)) [86] [15__[0.65 0.64
866 Drell-Yan process, o(pp) [S7] 1’1 (127 121
[CDF Run-1 W charge asymumetry [85] |12z 121
CDF Run-2 W charge asymumetry [89] 11 Lot 102
DO Run-2 W — ev, charge asymmetry [00] [12__[2.17 211
DO Run-2 W — v charge asymmetry 0110 [1.65 149
DO Run-2 Z rapidity distribution [92] 25 (056 051
CDF Run-2 Z rapidity distribution [03] |29 [1.60 T
CDF Run-2 inclusive jet production [04] 72 [1.42 1.55
. . . DO Ryn-2 inclusive jet praduction [95] 110_[1.04 113
Modern fits involve up to 40 experiments, 5000

and 100+ free parameters
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The flow of the PDF analysis

Benchmark data xf(x,Q)
(DIS, etc.) PDFs

Predictions
for new processes

Pavel Nadolsky (SMU)

We are interested not just
in one best fit, but also in
the uncertainty of the
resulting PDF
parametrizations and
theoretical predictions
based on them.

2014-12-09
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S B_—ee
Stages of the PDF analysis

1. Select valid experimental data

2. Assemble most precise theoretical cross sections and verify their
mutual consistency

3. Choose the functional form for PDF parametrizations

4. Implement a procedure to handle nuisance parameters (>200 sources
of correlated experimental errors)

5. Perform a fit

6. Make the new PDFs and their uncertainties available to end users

Pavel Nadolsky (SMU) 2014-12-09 29



Requirements for PDF parametrizations
PDF parametrizations for f,/,(x, () must be “flexible just enough” to
reach agreement with the data, without violating QCD constraints (sum

rules, positivity, ...) or reproducing random fluctuations
F2(m7 Qz)
->

# good fit

Pavel Nadolsky (SMU) 2014-12-09 30



Requirements for PDF parametrizations
PDF parametrizations for f,/,(x, () must be “flexible just enough” to
reach agreement with the data, without violating QCD constraints (sum

rules, positivity, ...) or reproducing random fluctuations
FZ(ma Qz)

-~

bad fit
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Requirements for PDF parametrizations

PDF parametrizations for f,/,(x, Q) must be “flexible just enough” to
reach agreement with the data, without violating QCD constraints (sum
rules, positivity, ...) or reproducing random fluctuations

FQ(mv Qz)
->
Traditional solution
# “Theoretically motivated” functions with
* a few parameters
_ al a2
o, Qo) = agx™ (1 — x
# good fit fz/p( 7Q ) ( )

x F(x; a3, aq, ...)

B2 — 0 focx” — Regge-like behavior

Bz 1 fo(1—2)" - quark
counting rules
B (a3, ay,...) affects intermediate z;

just a convenient functional form
Pavel Nadolsky (SMU) 2014-12-09 30



Requirements for PDF parametrizations

PDF parametrizations for f,/,(x, Q) must be “flexible just enough” to
reach agreement with the data, without violating QCD constraints (sum
rules, positivity, ...) or reproducing random fluctuations

Fy(z, Q%)
A
Radical solution
Neural Network PDF collaboration
B Generate NV replicas of the
experimental data, randomly scattered

around the original data in accordance
with the probability suggested by the
experimental errors

» . M Divide the replicas into a fitting
sample and control sample

Pavel Nadolsky (SMU) 2014-12-09 30



Requirements for PDF parametrizations

PDF parametrizations for f,/,(x, Q) must be “flexible just enough” to
reach agreement with the data, without violating QCD constraints (sum
rules, positivity, ...) or reproducing random fluctuations

F>(z,Q?)
V' N
Radical solution
Neural Network PDF collaboration
B Parametrize f,/,(7,Q) by
ultra-flexible functions — neural networks

B A statistical theorem states that any
function can be approximated by a neural
network with a sufficient number of

» - nodes (in practice, of order 10)

Pavel Nadolsky (SMU) 2014-12-09 30



Requirements for PDF parametrizations

PDF parametrizations for f,/,(x, Q) must be “flexible just enough” to
reach agreement with the data, without violating QCD constraints (sum
rules, positivity, ...) or reproducing random fluctuations

Fa(z, Q%)

Radical solution
Neural Network PDF collaboration

M Fit the neural nets to the fitting
sample, while demanding good
agreement with the control sample

> B Smoothness of f,/,(z, Q) is preserved,
despite its nominal flexibility

Pavel Nadolsky (SMU) 2014-12-09 30



Hessian error PDFs (CT10)
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Multi-dimensional error analysis

B Minimization of a likelihood
function (}?) with respect to
~ 30 theoretical (mostly PDF)
parameters {a;} and > 100
experimental systematical

; - parameters

Pavel Nadolsky (SMU) 2014-12-09 32



Multi-dimensional error analysis

B Establish a confidence region
for {a;} for a given tolerated
increase in x°

M In the ideal case of perfectly
compatible Gaussian errors,
68% c.l. on a physical
observable X corresponds to
Ax? =1 independently of the
number N of PDF parameters

See, e.g., P. Bevington, K. Robinson, Data analysis and
error reduction for the physical sciences

Pavel Nadolsky (SMU) 2014-12-09 32



Multi-dimensional error analysis

X2 A Pitfalls to avoid
B “Landscape”

» disagreements between the
experiments

In the worst situation, significant
disagreements between M
experimental data sets can
- produce up to N ~ M! possible
a; solutions for PDF's, with
N ~ 10°% reached for “only”
about 200 data sets

Pavel Nadolsky (SMU) 2014-12-09 32



Multi-dimensional error analysis

X2 A Pitfalls to avoid

B Flat directions

» unconstrained combinations
— of PDF parameters

» dependence on free
theoretical parameters,
especially in the PDF

~ parametrization

» impossible to derive reliable
PDF error sets

Pavel Nadolsky (SMU) 2014-12-09 32



Multi-dimensional error analysis

in The actual x? function shows

B 2 well pronounced global
minimum X(2)

B weak tensions between data
sets in the vicinity of x2
(mini-landscape)

>

a: B some dependence on
1

assumptions about flat
directions

Pavel Nadolsky (SMU) 2014-12-09 32



Multi-dimensional error analysis

in The actual x? function shows

B 2 well pronounced global
minimum X(2)

B weak tensions between data
sets in the vicinity of x2
(mini-landscape)

>

a: B some dependence on
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assumptions about flat
directions
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Multi-dimensional error analysis

X2“ The actual x? function shows
B 2 well pronounced global
minimum X%

B weak tensions between data
. P . 2
sets in the vicinity of x{
(mini-landscape)

>

a: B some dependence on
1

assumptions about flat
directions

The likelihood is approximately described by a quadratic y? with a revised
tolerance condition Ax? < 77
Pavel Nadolsky (SMU) 2014-12-09 32



Multi-dimensional error analysis

X2“ The actual x? function shows

B 2 well pronounced global
minimum X%

B weak tensions between data
. P . 2
sets in the vicinity of x{
(mini-landscape)

>

a: B some dependence on
1

assumptions about flat
directions

The likelihood is approximately described by a quadratic y? with a revised
tolerance condition Ax? < 77
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Multi-dimensional error analysis

X< The actual x? function shows
B 2 well pronounced global
minimum Y3

B weak tensions between data
. P . 2
sets in the vicinity of x{
(mini-landscape)

a; B some dependence on
assumptions about flat
directions

The likelihood is approximately described by a quadratic y? with a revised
tolerance condition Ax? < 77
Pavel Nadolsky (SMU) 2014-12-09 32
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Confidence intervals in global PDF analyses

Monte-Carlo sampling of the PDF parameter space

2 A
A very general approach that

M realizes stochastic sampling of the
Average probability distribution

P D F (Alekhin; Giele, Keller, Kosower; NNPDF)

/PDFS neural networks (nneoF)

Bl does not rely on smoothness of
or Gaussian approximations

EUnweighted M can parametrize PDF’s by flexible
| :

»

a;

Pavel Nadolsky (SMU) 2014-12-09 33
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Modern parton distribution functions

...are indispensable in computations of inclusive hadronic reactions at
CERN and other laboratories

g Papers commonly cited by ATLAS and CMS
= § as of 2012-05-23, from 'papers’, excluding seff-citations.
B oosl & o Figure: G. Salam, 2012 _
a = = =
z < F Arrows: PDF publications
8 s
g 0E - ?f . 15
o & & :
2 e e & e
A ca‘? & 3 N & 4
5 o Efisfe o £
é %%306&.5‘? dggé‘é\qﬁeéf\?g é’@«?-‘c’;-f’g %
< FTSFE Q§ F &3 £LFFTFFF £|
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£ 5
z
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L
Conclusions

B QCD theory at all energies undergoes rapid developments, with
much attention paid to

» ingenious perturbative computations for multi-particle states, fully
differential cross sections

» new factorization methods for differential cross sections and all-order
resummations

» sophisticated analysis of nonperturbative hadronic functions

B The global analysis help us to understand rich interconnections
between perturbative and nonperturbative features of QCD processes
and make sense of rich LHC dynamics

Pavel Nadolsky (SMU) 2014-12-09 35



