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Outline

» Motivations

» Neutrino detectors for oscillation experiments

» Neutrino sources

» Long-baseline experiments, near-past, current and future

» Note: | will not be able to cover all experiments involving neutrinos,
e.g. | am excluding experiments using cosmological sources. This is
very exciting and important physics!

Jonathan Paley, ANL HEP Division



What Do | Mean By Long-Baseline?

Long-Baseline
v Oscillations

» Long-baseline neutrino oscillations:
- “solar” mass splitting
- Am?y;1 = Am?y ~ 8 x 10 eV?

Absolute
v Mass

- L/E ~ 15000 km/GeV Short-Base
v Oscillation:

- “atmospheric” mass splitting
- Am?3; = Am?31 = Am?atm ~ 2 X 1073 eV?

- L/E ~ 500 km/GeV A

mass-~

Jonathan Paley, ANL HEP Division



Motivations

» You might have heard that neutrinos have mass.
» Depending on your point of view, this is already BSM

» Neutrinos are extremely abundant, and yet we know relatively very little
about them:

mass ordering
- absolute mass
Dirac or Majorana
- do they violate CP?
* Cross-sections
» Need to provide guidance to theory

» Three experimental approaches allow for clear answers to some of these
guestions: neutrino oscillation measurements, direct mass measurements
and searches for neutrinoless double-beta decay.



Neutrino Oscillations

» The mixing matrix may be factorized into components that are useful to
experimentalists:

1 0 0 C13 0 8136_i5 C19 S10 0
U = 0 C23 S23 0 1 0 —S12 C12 0
0 —S93 (€23 —8136+i5 0 C13 0 0 1
» Furthermore, experimentally we have A
determined: mV. V; I |
4 sin22932 ~1 BV
» Am?3; = Am?31 = Am?aim ~ 2 X 1073 eV? mYV: ’
(SuperK, MINOS) with characteristic L/E ~ 500 E At
km/GeV
» sin“612~ 0.3 v, I
» Am?1 = Am?y; ~ 8 x 10~ eV? (KamLAND, SNO) v &
with characteristic L/E ~ 15000 km/GeV

4 sin22613 ~ 0.1



Why Measure These Neutrino Oscillation Parameters?
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Why Measure These Neutrino Oscillation Parameters?

» These are fundamental parameters, needed for both theoretical calculations as well as for
optimizing future experiments.

» If neutrinos violate CP, they could have driven leptogenesis in the early universe, which could

explain the matter-antimatter asymmetry in the universe.

Jonathan Paley, ANL HEP Division



Why Measure These Neutrino Oscillation Parameters?

These are fundamental parameters, needed for both theoretical calculations as well as for
optimizing future experiments.

If neutrinos violate CP, they could have driven leptogenesis in the early universe, which could
explain the matter-antimatter asymmetry in the universe.

Do the relative masses of the neutrinos follow a “normal” hierarchy (m3>m,>m31) or an
“inverted” hierarchy (m2>mi>ms)?
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Why Measure These Neutrino Oscillation Parameters?

These are fundamental parameters, needed for both theoretical calculations as well as for
optimizing future experiments.

If neutrinos violate CP, they could have driven leptogenesis in the early universe, which could
explain the matter-antimatter asymmetry in the universe.

Do the relative masses of the neutrinos follow a “normal” hierarchy (m3>m,>m31) or an
“inverted” hierarchy (m2>mi>ms)?

If B23 is exactly maximal, why? The pattern of mixing
angles could provide insights into unification, new
symmetries, etc.
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Why Measure These Neutrino Oscillation Parameters?

These are fundamental parameters, needed for both theoretical calculations as well as for

optimizing future experiments.

If neutrinos violate CP, they could have driven leptogenesis in the early universe, which could
explain the matter-antimatter asymmetry in the universe.

Do the relative masses of the neutrinos follow a “norma

“inverted” hierarchy (m2>mi>ms)?

If B23 is exactly maximal, why? The pattern of mixing
angles could provide insights into unification, new
symmetries, etc.

If neutrino oscillation experiments establish the
inverted hierarchy and the next generation OvBB
experiments see nothing, then it is very likely that
neutrinos are Dirac particles.
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Why Measure These Neutrino Oscillation Parameters?

These are fundamental parameters, needed for both theoretical calculations as well as for

optimizing future experiments.

If neutrinos violate CP, they could have driven leptogenesis in the early universe, which could
explain the matter-antimatter asymmetry in the universe.

Do the relative masses of the neutrinos follow a “normal” hierarchy (m3>m,>m31) or an

“inverted” hierarchy (m2>mi>ms)?

If B23 is exactly maximal, why? The pattern of mixing
angles could provide insights into unification, new
symmetries, etc.
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Why Measure These Neutrino Oscillation Parameters?

These are fundamental parameters, needed for both theoretical calculations as well as for
optimizing future experiments.

If neutrinos violate CP, they could have driven leptogenesis in the early universe, which could
explain the matter-antimatter asymmetry in the universe.
III

Do the relative masses of the neutrinos follow a “norma
“inverted” hierarchy (m2>mi>ms)?

hierarchy (ms>m2>mz1) or an

If B23 is exactly maximal, why? The pattern of mixing
angles could provide insights into unification, new
symmetries, etc.

If neutrino oscillation experiments establish the
inverted hierarchy and the next generation OvBB
experiments see nothing, then it is very likely that
neutrinos are Dirac particles.

Small neutrino masses suggest a heavy partner (eg,
see-saw mechanism) - neutrinos provide a window
to physics at the GUT scale!

Jonathan Paley, ANL HEP Division



Why Measure These Neutrino Oscillation Parameters?

These are fundamental parameters, needed for both theoretical calculations as well as for
optimizing future experiments.

If neutrinos violate CP, they could have driven leptogenesis in the early universe, which could
explain the matter-antimatter asymmetry in the universe.
III

Do the relative masses of the neutrinos follow a “norma
“inverted” hierarchy (m2>mi>ms)?

hierarchy (ms>m2>mz1) or an

If B23 is exactly maximal, why? The pattern of mixing
angles could provide insights into unification, new
symmetries, etc.

If neutrino oscillation experiments establish the
inverted hierarchy and the next generation OvBB
experiments see nothing, then it is very likely that
neutrinos are Dirac particles.
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How Are Neutrinos Seen?

Probability of a neutrino interaction is
~1038/cm?
Since neutrinos don’t like to interact with

matter, we need HUGE detectors!

Typical size is tens to thousands of tons



How Are Neutrinos Seen?

Probability of a neutrino interaction is
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How Are Neutrinos Seen?

» We don’t actually see the
neutrinos, only the particles
they produce when they

interact with nuclei.

»  Two types of neutrino

interactions:

Charged-current (CC, W-
boson exchange). Final state
includes a lepton (e, porT) +
hadron.

Neutral-current (NC, Z-boson
exchange). Final state
includes a neutrino +
hardron. Not seen until
1973

Jonathan Paley, ANL HEP Division
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How Are Neutrinos Seen?

» We don’t actually see the
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How Are Neutrinos Seen?
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Neutrino Detection - Fundamentals

» Ve CC off electron

neutrlno lectron | » Not used by many experiments
\ Oe - since cross-section is much
Q / smaller than CC interactions
electron \ v with nuclei

9

neutrino

Jonathan Paley, ANL HEP Division



Neutrino Detection - Fundamentals

neutrino | » vi NC off nucleus
nheutrino

» hadrons (only) in final state

» neutrinos carries off energy



Neutrino Detection - Fundamentals

» v| CC off nucleus

electron neutrino | » charged lepton (+ hadrons) in

o]

Ve

electron =" final state

Qe-
\ / » energy and flavor of neutrino are
| .
‘O \\A observable
| ‘O

hadrons



Neutrino Detection
» Signal: appearance of photons or charged particles inside a detector.

» Require no incoming charged particle within vicinity of interaction vertex (often
pushes experiments to go deep underground)

» Interactions in detector are often very “rare”, 0(0.1-1)/day

» Signal energies can vary across many orders of magnitudes

» Particle identification tells us the type of neutrino

» Energy of incoming neutrino can be measured for CC events only.

» NOTE: many commonalities between neutrino, proton-decay, dark matter and
neutrino-less double beta decay search experiments!

» A VERY wide variety of detectors are used to detect neutrinos

» As in any experiment, the type of detector used depends on energy thresholds,
energy resolution, signal identification (efficiency) and background rejection
(purity) needed.

Jonathan Paley, ANL HEP Division



Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples

CHERENKOV EFFECT
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Neutrino Detectors - Some Examples

..00‘.‘.. 4109 total p.e.
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Neutrino Detectors - Some Examples

Liquid SciEtiIIator

{




Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples

Liquid ScthiIIator




Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples

vu CC event
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Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples

Induction/
Collection Planes

Jonathan Paley, ANL HEP Division



Induction/
Collection Planes

Neutrino Detectors - Some Examples

PlaneView
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Induction/
Collection Planes

Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples
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Neutrino Detectors - Some Examples
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How Are Neutrinos Produced?

» The universe if full of neutrinos! About 10 x 1012

V’s pass through your body each second!

» Nature provides many sources of neutrinos:

+ The Big Bang (411/cm? everywhere in the Galaxy NGC 4526
universe) \,-

- Supernovae (99% of the energy in carried off " et
Supernova 1994D

by neutrinos!)
* The sun (neutrinos regulate solar fusion)

- Cosmic ray interactions with the upper

atmosphere.

+ Bananas! (~1 million neutrinos/day!)

» Man also creates neutrinos:
* Nuclear reactors

* Particle accelerators

Jonathan Paley, ANL HEP Division
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Neutrino Production via Accelerators

AGS (proton accelerator)

Be target
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Neutrino Production via Accelerators

First accelerator-based neutrino beam: Brookhaven, 1962

15 GeV proton beam struck Be target producing secondary hadrons (mostly rs)
r’s decay to neutrinos

neutrinos interact in detector to produce electrons or muons

tector: k ch
detector: spark chamber AGS (proton accelerator)

Be target Q@g\/@v
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Neutrino Production via Accelerators

figure courtesy
Z. Pavlovic




Neutrino Production via Accelerators

» Modern-day neutrino beams are not all
that different.

» Main improvement is use of magnetic
focusing horns, increase flux by ~6x.

figure courtesy
Z. Pavlovic

Jonathan Paley, ANL HEP Division




The Solar Neutrino Problem

» We expect to see only ve coming from the sun.

» Precise solar models allow us to predictthe |[p+p > 21 +e" { v p+e +p->2H fve
energy spectra of neutrinos from the sun — =P
) 99.6% 0.4%
» A deficit (~1/2) of ves has been observed since 24 4P > SHe+ v
. SuperK, SNO 15%
. Chlorine | -
Gallium I — 3 3
_ hep
1on £1% Bahcall-Pinsonneault 2004 |_3He ; 4He N 7Be g
lOIO
+12% 99;9// w
10°
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10 i o TBe + € > TLifr v, 7Be + P > OB + 7
107 Berylliuhn=Z
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N
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/ BoQn-8
104 ‘
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Neutr‘ino Ener‘gy (MeV) Jonathan Paley, ANL HEP Division



The Sudbury Neutrino Oscillation (SNO) Detector

» 1 kton of D20 (%H,0)

» Sensitive to:

» CC: Vo+*H > p+p+e

4 ES Va ]

-e — UV, t+e

» NC: Va——QH—>n—|—p-|—Va

R R
Rp=-"Y+41 or Ry=-%:+1

REs Rnc
means: Ve — Vg s
Pure D,O Salt 3SHe Counters
Nov 99 — May 01 Jul 01 — Sep 03 Nov 04 — Nov 06

n+d—-ot+y

(E, = 6.25 MeV)

N+3Cl—->3Cl+Xy n+3He—->t+p

(Ex, = 8.6 MeV) proportional counters

enhanced NC rate c=5330b
and separation event-by-event
Sepa ratlon Jonathan Paley, ANL HEP Division



The Sudbury Neutrino Oscillation Detector

Solar Neutrino Problem
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The Sudbury Neutrino Oscillation Detector

Ratio to SSM Prediction (BP04)

Solar Neutrino Problem

Resolved
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The Sudbury Neutrino Oscillation Detector
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The KamLAND Experiment

» 1 kton of liquid scintillator

2,

v -
n+p-—=>d+y

» Antineutrinos came from 20 nuclear
reactors in Japan and South Korea; flux
weighted average baseline in ~180 km.

» Tests solar neutrino oscillations on Earth.
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KamLAND Results
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The Borexino Experiment

300 tons (100 ton fiducial) of liquid scintillator,
surrounded by outer layer of ultra-pure water which acts
as a shield against neutrons and gamma rays

2000 PMTs (20 cm diameter)

Very radiopure environment

Designed to detect
very low energy
solar neutrinos

Jonathan Paley, ANL HEP Division



The Borexino Experiment

Spectrum after TFC veto

Before Borexino Pallavicini - Neutrino 2012 Borexino 2012
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The Atmospheric Neutrino Anomaly

Atmospheric Neutrinos

»  We expect to see
~2X as many
muon neutrinos
as electron
neutrinos coming
from cosmic rays

Ratio of V/Ve ~ 2 Up/Down Symmetric Flux
(for Ev < few GeV) (for Ev > few GeV)

Jonathan Paley, ANL HEP Division



The Super-Kamiokande Detector (Japan)

-
Located in the Japanese Alps in a zinc mine.

5

7
Covered by 1000m of rock. R

-
I
~ -
F IS 4

50 kton water Cherenkov detector (39 m
diameter, 42 m tall)

Over 11,000 50 cm photomultiplier tubes -
(PMTs) detect faint light signals from b
neutrino interactions with pure water |
inside the tank.

Began operation in 1996.



The Super-Kamiokande Detector (Japan)

Super-Kamiokande

» Neutrino energy is determined by the 4109 total p.c.
amount of light captured by the PMTs. P =450 MeVie

» Super-K is sensitive to a very wide range
neutrino energies: 4.5 MeV - 1 TeV!

e—like

» Electron and muon neutrino interactions
identified (separated) by the shape
(“fuzziness”) of the Ckov ring.

wo X 1 20m
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The Super-Kamiokande Detector (Japan)

Neutrino energy is determined by the
amount of light captured by the PMTs.

Super-K is sensitive to a very wide range
neutrino energies: 4.5 MeV - 1 TeV!

Electron and muon neutrino interactions
identified (separated) by the shape
(“fuzziness”) of the Ckov ring.

e—like

u—like

Super-Kamiokande

Fun 4148 K 130410

4109 total p.e.
p =480 MeV/c
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Evidence for Neutrino Oscillations from Super-K

Number of detected
electron neutrino
events agree very
well with predicted
number.

Number of detected
muon neutrino
events strongly
disagrees with the
predicted number.

Explained by v, —
v, 0scillations!

Super —Kamiokande 848 days Preliminary
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Divide data by prediction to look for L/'E dependence of oscillation probability

Jonathan Paley, ANL HEP Division



Far Detector’
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ldentifying Events in MINOS

vu CC event ve CC event NC event

Long p track + Short event with
shower at vertex EM shower profile.

Short, diffuse event.

E. determined from curvature and/or range,
Eshower determined from MC tuned to external data.

Jonathan Paley, ANL HEP Division



MINOS Results

Neutrinos
120 MINOS Preliminar
=} Minos data
100 === Best fit oscillation
=== N0 oscillations
80 [ NC background
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L 10.71x 10 POT
40 contained-vertex vy,
20 -|- -|-
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Normal Hierarchy

|Am3,| = 2.341009 x 1073eV?
sin2 (923 = 043__|_8%)2

0.37 < sin® o3 < 0.64 (90% C.L.)

Jonathan Paley, ANL HEP Division



Looking to the Near Future...

Jonathan Paley, ANL HEP Division



The Tokai to Kamioka (T2K) Experiment

Use Super-K as
far detector

~ SolenoidCoil

Barrel ECAL |
_:,

Jonathan Paley, ANL HEP Division



T2K Goals

» Primary goals:

» Observe vy — Ve oscillations and measure mixing angle 813
» Search for CP violation in the neutrino sector.
» Secondary goals:
» Improve measurement of sin2(2023)
» Search for sterile neutrinos
» Measure neutrinos from galactic supernovae
» Cross-section measurements using ND

» Currently taking data and beginning to show exciting results.

Jonathan Paley, ANL HEP Division
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T2K Results from 2012
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NOVA Goals

» Primary goals:
» Observe vy = ve oscillations and measure mixing angle 013
» Determine the neutrino mass hierarchy
» Search for CP violation in the neutrino sector.
» Secondary goals:
» Improved measurement of sin2(2023) (few % uncertainty)
» Search for sterile neutrinos
» Measure neutrinos from galactic supernovae
» Cross-section measurements using ND

» Has begun taking data, first results expected in early 2015. Data taking
will continue until at least 2020.



Events in NOVA

= X-View y-view

B S I e e
v, (14GeV)+N—>p, (1.0 GeV) + X (QEL)

v, (5.6 GeV) + N —v + X (DIS), Y=0.82

The NOvVA detectors are specifically designed to detect
electrons, in the search for v,—v. appearance.

Jonathan Paley, ANL HEP Division
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NOvVA hierarchy resolution, 343 yr (v+V)
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NOVA Sensitivities

NOvA CPv determination, 343 yr (v4V)
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Looking to the Not-too-Distant
Future...

Jonathan Paley, ANL HEP Division
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Jonathan Paley, ANL HEP Division
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Hyper Kamiokande (Japan)

v

1 Megaton (~20x larger than‘SuperK!)

99000 20” PMTs

295 km baseline

Could also improve proton-decay limits by ~10x

v

v

v



The Long-Baseline Neutrino Facility (USA)
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The Long-Baseline Neutrino Facility (USA)
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Summary

Long baseline experiments have guided the development of the three-flavor
neutrino mixing paradigm.

The next decade promises to be very exciting as we make better and better
measurements.

Next lecture: Short-baseline and absolute mass experiments

Short-Baseline Absolute
v Oscillations v Mass

Jonathan Paley, ANL HEP Division



Questions to Students

» List as many ways to reduce the following backgrounds in a long-baseline
experiments:

» COSMIcC rays
» NC interactions

» Large uncertainties in neutrino fluxes and cross sections are often a limiting
systematic in neutrino oscillation experiments. How may these uncertainties
be mitigated? Are there any downsides to your approach? Any limitations?

There are no “right” answers!

See me during before Friday to discuss
or send your thoughts to jpaley@fnal.gov

Jonathan Paley, ANL HEP Division
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Some Neutrino History

» 1956: Reines and Cowan are the first to directly detect
neutrinos via inverse beta decay (ve + p = €* + n) at the

Savannah River Nuclear Plant.
Fhotomultiplier

Delayed coinciden% oa
detection of y from ““Cd
with pair of v's from

g"- @ annihilation.

FPort from L
nuclear Vi T
reactor ~W I s

Neutrino
flux
13‘ 2 //\/
10 “/em<s .
Water target with Reines and Cowan
scintillator plus R T T T ——
CdCl 5 T

» Note: over 50 years later, modern-day experiments continue
to implement this same technique of delayed coincidence!

» 1957: Neutrinos are found to be left-handed by Goldhaber,
Grodzins and Sunyar by measuring the polarization .

» 1962: Muon neutrinos, different from electron neutrinos, are
discovered by Ledermen, Schwartz, Steinberger and
colleagues. Neutrinos have flavor!

(L to R) Steinberger, Schwartz
and Ledermen

Jonathan Paley, ANL HEP Division



Some Neutrino History

» 1968: Ray Davis and colleagues measure
neutrino solar flux in the Homestake Mine (SD).
The flux is too low by ~2x; this deficit becomes
known as the “solar neutrino problem”.

» 1985: IMB and Kamiokande experiments
observe the “atmospheric neutrino anomaly”.
Note: both of these experiments were
originally designed to search for proton-decay!

» 1996: Super-Kamiokande collaboration reports
finding neutrino oscillations; muon neutrinos
have mass!

Jonathan Paley, ANL HEP Division
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» Neutrino masses are so small that no one has yet been able to directly
measure them!

» However, if neutrinos have mass and if the v-flavor states are a quantum
superposition of mass eigenstates, then neutrino oscillations occur. In
other words, we can see the effect of neutrino mass by measuring their
interference pattern!

» Neutrino oscillations are a quantum-mechanical phenomenon that
occur over very large length-scales!
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Neutrino Oscillatio

i

I

Hl HUHIHIHHH i

mw \; HH | Hm ll

Jonathan Paley, ANL HEP Division



>

Neutrino Oscillations

<« )VH

Neutrino oscillations occur because v-flavor states are a
guantum superposition of mass eigen states.

|I/a > = ZU:&‘V@ >

P(vg — 1) = ZU* i % Ug;

In vacuum:

P(v, = ve) = |2U3Ues sin Agre 892 4 2U ;5Ues sin A21|2

A 1.27Am;;[eV?] L{km]
i = [GeV]

Jonathan Paley, ANL HEP Division
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Cross-Sections & Fluxes

» Generally speaking, need to know how many neutrinos one expects to see in a
detector

Nv(E) = Ov(E)oy(E)

» In oscillation experiments, this knowledge can be ~circumvented by using two
detectors to cancel out our ignorance. One detector located near the source to
measure N(E) before the V’s oscillate, one detector located farther away after v’s
have oscillated.

» However, this is not exactly a silver bullet:
» some experiments only have one detector

» some experiments have two detectors, but made of different materials/
geometry

» some experiments want to measure the cross-section

Jonathan Paley, ANL HEP Division
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Cross-Sections & Fluxes

Side ECAL Ring (Pb) 0.6 tons Side HCAL Tower (Fe) 116 tons

Fully Active
Target:
8.3 tons
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Cross-Sections & Fluxes

» MINERVA seeks to measure low-energy neutrino
cross-sections to support neutrino oscillation
experiments as well as to study the strong
dynamics of the nucleon and nucleus that effect
these interactions.

Fully Active
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8.3 tons
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Cross-Sections & Fluxes

» MINERVA seeks to measure low-energy neutrino
cross-sections to support neutrino oscillation
experiments as well as to study the strong
dynamics of the nucleon and nucleus that effect
these interactions.

» Active core (8.3 ton): segmented solid scintillator
for tracking and PID.
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cross-sections to support neutrino oscillation
experiments as well as to study the strong
dynamics of the nucleon and nucleus that effect
these interactions.

» Active core (8.3 ton): segmented solid scintillator
for tracking and PID.

» Core surrounded by EM and hadronic
calorimeters.
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Cross-Sections & Fluxes

» MINERVA seeks to measure low-energy neutrino
cross-sections to support neutrino oscillation
experiments as well as to study the strong
dynamics of the nucleon and nucleus that effect
these interactions.

» Active core (8.3 ton): segmented solid scintillator
for tracking and PID.

» Core surrounded by EM and hadronic
calorimeters.

» MINOS acts as muon catcher.
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Cross-Sections & Fluxes

» MINERVA seeks to measure low-energy neutrino
cross-sections to support neutrino oscillation
experiments as well as to study the strong
dynamics of the nucleon and nucleus that effect
these interactions.

» Active core (8.3 ton): segmented solid scintillator
for tracking and PID.

» Core surrounded by EM and hadronic
calorimeters.

4 M'NOS aCtS as muon Catcher SideECALRing(Pb)Oﬁtons Side HCAL Tower (Fe) 116 tons

Torets 11T \H \\\

Target:
<
......................................

» Goal is to measure quasi-elastic (QE), resonance  ®
(Res) and deep inelastic scattering (DIS) cross-
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Cross-Sections & Fluxes

» MINERVA seeks to measure low-energy neutrino
cross-sections to support neutrino oscillation
experiments as well as to study the strong
dynamics of the nucleon and nucleus that effect
these interactions.

» Active core (8.3 ton): segmented solid scintillator
for tracking and PID.

» Core surrounded by EM and hadronic
calorimeters.

» MINOS acts as muon catcher.

» Goal is to measure quasi-elastic (QE), resonance
(Res) and deep inelastic scattering (DIS) cross-
sections to ~5--10% for energies of ~0.5-20 GeV.

» Various targets will cover large A-range.
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Neutrino Fluxes
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Neutrino Fluxes
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Neutrino Fluxes
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Neutrino Fluxes

Flux uncertainties reduced to ~8-10%.

Good enough for now, but need to do
better in future!

Jonathan Paley, ANL HEP Division



NuStorm: Future Solution to the Flux Problem?

Neutrino Beam

Muon Decay
Ring

94 m

é Target

pt —etvo, | p= — e Ty,
Uy, — Dy, Vy — Uy disappearance
U, — Ve Vg —> Vg appearance (challenging)
DZ e | Appeaance (MR OSAIRoNT |  5/12 channels accessible!
Ve — Ve Ve — U, disappearance
P — Wy, De — Uy, appearance: “golden” channel
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NuStorm: Future Solution to the Flux Problem?

Staged approach to building high intensity neutrino

factory

Can be built TODAY with known technology

Well understood neutrino source:

W= et vy Ve

L = e Vy Ve

Near absolute flux determination!

Neutrino Beam

Muon Decay
Ring

94 m

é Target

ut —etu.o,

o — e Vely

Vi = Py

Vy — Ve

Ve — Ve

Vi = Vu

Vy — Ve

Ve —¥ Ug

disappearance

appearance (challenging)

disappearance

Ve 7 Vg

Ve — Uy,

appearance: “golden” channel

8/12 channels accessible!
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Bethe-Bloch Equation
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Time Projection Chamber

BNL E910

1PC dE/dx Particle 1D-

I_--—-————-—_—_—_———-———-—-—-—-—_—_—_—_—_—_—_—_I

Covaa o by by b bovna bovna b by bya g

.3.

1 I2. L
log(p) GeVrc

W
= o

(Xp/FP) 307

&

IR I N

—y

—y

O
@

i
S

o (X,Zz) position — pad locations, y position —

drift time.

and a resolution of

~1 ms3

o Active volume of

~0.5 cms.
o PID via <dE/dx> below ~1 GeV/c.
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Calorimeters

Detector designed to measure energy deposition and direction for
electromagnetic (EM) or hadronic (H) showers.

EM calorimeters are characterized by distance for an EM interaction
to occur, the “radiation length”, Xo

13.8 g cm=2 (Fe)
- 6.0gcm=2(U)
Hadronic calorimeters are characterized by distance for a nuclear
interaction to occur, the “interaction length”, A
132.1 g cm=2 (Fe)
- 209 gcm=2 (U)
Calorimeters are usually many “lengths” deep in order to contain as
much of the energy as possible
EM calorimeters are usually placed in front of H calorimeters



Time-of-Flight Detectors

» Some knowns:
- momentum (p) , , ( 42
1>

- traversal time (t) m- =
- distance (L)
» Note: separation “power” of detector depends on time resolution:

L2

P2

» Typical timing resolution for ToF detectors: ~100 ps, usually good
enough to separate particles up to a few GeV

0t* =t5 —t7 = — (Am?)



Cherenkov Radiation

A
cost. = (1/nf3) \‘\‘\ yc///
2N  2maz? { 1 /’/.\%%
— — N'%,” Y
ded\ ~ N2 32n2(\) » Yo,
~N // '\‘I/e
P \ // \I/G/\
/// GC T] \Q\)?/
o \ f N
Common refractive indices & thresholds: Particle velocity v = Be
Material Index Muon momentum | Proton momentum
threshold (GeV): threshold (GeV):

Air (at STP) 1.000277 4.490 39.849
CcO2 1.00045 3.523 31.263
Aerogel 1.07 0.278 2.464
Water (lce) 1.31 0.125 1.108
Water (at 20C) 1.333 0.120 1.064
Ethanol 1.361 0.114 1.016
Pyrex 1.47 0.098 0.871
Diamond 2.419 0.048 0.426

Jonathan Paley, ANL HEP Division




Large Area Photodetectors: Future Technology?
» Size of neutrino detectors creates an enormous strain on funding.

» Photodetectors are a cost driver; need to reduce cost, while increasing coverage
inside detector (improved energy resolution = more precise measurements)

» 2 mm spatial
resolution!

» ~60 ps timing
resolution using
economical anode
design.

v
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The OPERA Experiment

Budapest R l\\-"'
» Designed for vy =& v¢

appearance detection.
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The OPERA Experiment

» Emulsion (~“camera film) detector.

» Look for short tracks with kinks or
“trident” (t- = h+ h- h-)

Detector ~150000 ECC Bricks = Weight ~1250 ton
Undergroud Lab, Italy
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The OPERA Experiment

» So far, two v; events have been reported

parent ==
-

2000 um

Nakamura - Neutrino 2012

Jonathan Paley, ANL HEP Division



The OPERA Experiment

» So far, two v; events have been reported

# of Expected
events BG for
1{o] v

‘C:::@:*“: t
parent _—a= - -- Decay (Prelimi

- nary)

g

2008- Finished
2009

2010- In analysis 1343 1
2000 um 2011

2012 Started

Nakamura - Neutrino 2012

Total 4126 2.1 2 0.2

Nakamura - Neutrino 2012



Future Solar Neutrino Experiments (Beyond those already in operation)

pep/CNO Medium _________staws

SNO+ 780 kg LAB Liq scintillator = Construction, start 2013
Kamland-2 780 Ib Liq Scintillator Following KamLAND-Zen

For pp, ’Be neutrinos, measuring CC plus ES could extract electron and total neutrino fluxes

XMASS 20 tons Liq Xe 835 kg since 2010 for B

CLEAN 50 tons Lig Ne MiniClean (500 kg) start 2013
povacc |

LENS 10 tons *°In ULENS under development

MOON 3 tons 1Mo R&D in progress

IPNOS 151N R&D in progress

MEGAPROJECTS Threshold defines:®8+? |

HyperK, MEMPHYS Megaton Water Cerenkov
LBNE, GLACIER 50 to 100 kTon Liquid Ar

LENA 50 kTon Liq Scintillator McDonald - Neutrino 2012

Jonathan Paley, ANL HEP Division



